Skip to main content
Log in

Phytochemical, phase transition, FTIR, and antimicrobial characterization of defatted Trigonella foenum graecum seed extract as affected by solvent polarity

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study focused on the fenugreek seed powder extract (FSP-Ex) obtained using four selected solvents based on polarity differences (acetone, ethanol, hexane, and petroleum ether). The FSP-Ex properties were studied through pH, color, antioxidant, flavonoid and phenolic content. Phase transition by DSC and FTIR spectrum was performed to get more insight into FSP-Ex and antimicrobial activity against three pathogens. The maximum value of FSP-Ex was noticed with ethanol as compared to other solvents. The pH, color (L*a*b*), antioxidant, flavonoid, and phenolic content of ethanol FSP-Ex were 6.87 ± 0.03 (66.3,. 10.66 and 44.23), 67.87%, 97.17 ± 0.01 mg QE/g and 71.17 ± 0.01 mg GAE/g respectively. The analytical properties of FSP-Ex revealed its thermal behavior and the presence of functional groups in chemical structure by DSC and FTIR, respectively. The phase transition by DSC analysis and FTIR analysis generated peaks that revealed the thermal characterization and functional groups present in FSP-Ex. The antimicrobial activity of ethanolic extract of FSP revealed the most suited zone of inhibition of 3.27 mm against Bacillus subtilis at 100 mg/mL strength among other selected microbes and solvents. Hence, based on these findings, FSP-Ex could be considered a novel method to study the relationship between solvent polarity with FSP-Ex and its phytochemical, physicochemical, and analytical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets created for this study are available on the reasonable request of the corresponding authors.

References

  1. K. Platel, K. Srinivasan, Nahrung 44, 42–46 (2000)

    Article  CAS  PubMed  Google Scholar 

  2. K.T. Roberts, J. Med. Food 14, 1485–1489 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. P. Arya, P. Kumar, J. Food Biochem. 3(11), e14390 (2022)

    Google Scholar 

  4. D. Srivastava, J. Rajiv, M.M.N. Mahadevamma, J. Puranaik, P. Srinivas, Food Sci. Nutr. Sci. 3, 1473–1479 (2012)

    Google Scholar 

  5. H.S. Snehlata, D.R. Payal, Int. J. Curr. Pharm. Rev. Res. 2, 169–187 (2012)

    Google Scholar 

  6. D. Tewari, A. Jóźwik, M. Łysek-Gładysińska, W. Grzybek, W. Adamus-Białek, J. Bicki, N. Strzałkowska, A. Kamińska, O.K. Horbańczuk, A.G. Atanasov, Nutrients 12, 2522 (2020)

    Article  Google Scholar 

  7. S.A. Wani, P. Kumar, J. Saudi Soc. Agric. Sci. 17, 97–106 (2018)

    Google Scholar 

  8. C. Zhou, Y. Qin, R. Chen, F. Gao, J. Zhang, F. Lu, Life Sci. 258, 1–9 (2020)

    Article  Google Scholar 

  9. T.A. Dar, M. Uddin, J. Complement. Med. Altern. Healthc. 7, 1–3 (2018)

    Google Scholar 

  10. S. Chaudhary, P.S. Chaudhary, S.K. Chikara, M.C. Sharma, M. Iriti, Not. Bot. Horti Agrobot. 46, 22–31 (2018)

    Article  CAS  Google Scholar 

  11. T. Hashidume, K. Sasaki, J. Hirata, M. Kato, Y. Yoshikawa, Y. Iwasaki, H. Arai, S. Miura, N. Miyoshi, J. Agric. Food Chem. 66, 9968–9975 (2018)

    Article  CAS  PubMed  Google Scholar 

  12. P. Aumsuwan, S.I. Khan, I.A. Khan, Z. Ali, B. Avula, L.A. Walker, Z. Shariat-Madar, W.G. Helferich, B.S. Katzenellenbogen, A.K. Dasmahapatra, Arch. Biochem. Biophys. 591, 98–110 (2016)

    Article  CAS  PubMed  Google Scholar 

  13. S.A. Wani, S. Bishnoi, P. Kumar, Food Meas. 10, 98–110 (2016)

    Google Scholar 

  14. T. Chen, S. Hu, H. Zhang, Q. Guan, X. Yang, X. Wang, Food Funct. 8, 659–669 (2017)

    Article  CAS  PubMed  Google Scholar 

  15. T. Wang, R.C. Choi, J. Li, C.W. Bi, W. Ran, X. Chen, T.T. Dong, K. Bi, K.W. Tsim, J. Ethnopharmacol. 139, 214–220 (2012)

    Article  CAS  PubMed  Google Scholar 

  16. W. Sun, M.H. Shahrajabian, H. Shen, M. Khoshkharam, Q.I. Cheng, Res. Crop Ecophysiol. 14, 52–65 (2019)

    Google Scholar 

  17. A. Binesh, S.N. Devaraj, H. Devaraj, Biochimie 148, 63–71 (2018)

    Article  CAS  PubMed  Google Scholar 

  18. K. Onoda, M. Kato, Y. Tsunematsu, F. Eto, M. Sato, Y. Yoshioka, T. Yoshida, K. Tamura, I. Yao, H. Dohra, K. Watanabe, N. Miyoshi, J. Agric. Food Chem. 71, 4292–4297 (2023)

    Article  CAS  PubMed  Google Scholar 

  19. P. Arya, P. Kumar, J. Food Biochem. 45(12), e14005 (2021)

    Article  CAS  PubMed  Google Scholar 

  20. Z. Chen, J. Xu, Y. Wu, S. Lei, H. Liu, Q. Meng, Z. Xia, Biochem. Biophys. Res. Commun. 503, 1181–1185 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. M. Liu, L. Xu, L. Yin, Y. Qi, Y. Xu, X. Han, Y. Zhao, H. Sun, J. Yao, Y. Lin, K. Liu, J. Peng, Sci. Rep. 5, 1–11 (2015)

    Google Scholar 

  22. T. Xu, L. Zheng, L. Xu, L. Yin, Y. Qi, Y. Xu, X. Han, J. Peng, Arch. Toxicol. 88, 739–753 (2014)

    Article  CAS  PubMed  Google Scholar 

  23. X. Zhao, X. Cong, L. Zheng, L. Xu, L. Yin, J. Peng, Toxicol. Lett. 214, 69–80 (2012)

    Article  CAS  PubMed  Google Scholar 

  24. P. Arya, M. Munshi, P. Kumar, Food Chem. Adv. 2, 100170 (2023)

    Article  Google Scholar 

  25. M.L. McKoy, P.G. Thomas, H. Asemota, F. Omoruyi, O. Simon, J. Med. Food 17, 1183–1188 (2014)

    Article  CAS  PubMed  Google Scholar 

  26. L. Sanchez-Sanchez, M.G. Hernandez-Linares, M.L. Escobar, H. Lopez-Munoz, E. Zenteno, M.A. Fernandez-Herrera, G. Guerrero-Luna, A. Carrasco-Carballo, J. Sandoval-Ramirez, Molecules 21, 1533 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  27. E. Herrera-Pool, A.L. Ramos-Díaz, M.A. Lizardi-Jiménez, S. Pech-Cohuo, T. Ayora-Talavera, J.C. Cuevas-Bernardino, U. García-Cruz, N. Pacheco, Ultrason. Sonochem. 76, 105658 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. A. Jouyban, S. Soltanpour, H.K. Chan, Int. J. Pharm. 269(2), 353–360 (2004)

    Article  CAS  PubMed  Google Scholar 

  29. H. Nawaz, M.A. Shad, N. Rehman, H. Andaleeb, N. Ullah, Braz. J. Pharm. Sci. 56, 5–11 (2019)

    Google Scholar 

  30. A.C. Akinmoladun, O.E. Falaiye, O.B. Ojo, A. Adeoti, Z.A. Amoo, M.T. Olaleye, Bull. Natl. Res. Cent. 46(1), 1–9 (2022)

    Article  Google Scholar 

  31. O.K. Chun, A. Floegel, S.J. Chung, C.E. Chung, W.O. Song, S.I. Koo, J. Nutr. 140, 317–324 (2009)

    Article  PubMed  Google Scholar 

  32. L.F. Pedersen, P. Rojas-Tirado, E. Arvin, P.B. Pedersen, Aquac. Eng. 85, 9–14 (2019)

    Article  Google Scholar 

  33. C.S. Dzah, Y. Duan, H. Zhang, C. Wen, J. Zhang, G. Chen, H. Ma, Food Biosci. 35, 1–9 (2020)

    Article  Google Scholar 

  34. P.X. Chen, Y. Tang, M.F. Marcone, P.K. Pauls, B. Zhang, R. Liu, R. Tsao, Food Chem. 185, 298–308 (2015)

    Article  CAS  PubMed  Google Scholar 

  35. D. Su, R. Zhang, F. Hou, M. Zhang, J. Guo, F. Huang, Z. Wei, BMC Complement. Altern. Med. 14, 1–9 (2014)

    Article  Google Scholar 

  36. X.J. Yang, B. Dang, M.T. Fan, Molecules 23, 1–20 (2018)

    Google Scholar 

  37. C.J. Chirayil, J. Abraham, R.K. Mishra, S.C. George, S. Thomas, Therm. Rheol. Meas. Tech. Nanomater. Character. (2017). https://doi.org/10.3390/molecules26206304

    Article  Google Scholar 

  38. S. Wen, J. Liu, J. Deng, Minerals fluid inclusions, in Fluid Inclusion Effect in Flotation of Sulfide Minerals (Elsevier, 2019), pp.1–16

  39. L.A.N. Al-Timimi, Asian Pac. J. Cancer Prev. 20(12), 3771–3776 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. M. Munshi, P. Arya, P. Kumar, J. Oleo Sci. 1, 1349–1358 (2020)

    Article  Google Scholar 

  41. P. Arya, P. Kumar, Ultrason. Sonochem. 74, 1–9 (2021)

    Article  Google Scholar 

  42. N. Kapilraj, S. Keerthanan, M. Sithambaresan, J. Chem. 4, 1–6 (2019)

    Article  Google Scholar 

  43. Y. Ohno, in IS&T NIP16 Conference, Vancouver, Canada (2000), pp.

  44. W. Brand-Williams, M.E. Cuvelier, C. Berset, Lebens. Wissen. Technol. 28, 25–30 (1995)

    Article  CAS  Google Scholar 

  45. J. Zinshen, T. Mengcheng, W. Jainming, Food Chem. 64, 555–559 (1999)

    Article  Google Scholar 

  46. L. Singleton, R. Orthofer, R.M. Lamuela-Raventos, Methods Enzymol. 299, 52–178 (1999)

    Google Scholar 

  47. F.H.A. Fernandes, C.P. Santana, R.L. Santos, L.P. Correia, M.M. Conceição, R.O. Macêdo, A.C.D. Medeiros, J. Therm. Anal. Calorim. 113, 443–447 (2012)

    Article  Google Scholar 

  48. V.S. Murali, V.N.M. Devi, P. Parvathy, M. Murugan, Mater. Today Proc. 45, 2166–2170 (2020)

    Article  Google Scholar 

  49. O.J. Fakayode, T.T.I. Nkambule, Food Chem. 348, 129146 (2021)

    Article  CAS  PubMed  Google Scholar 

  50. B.C. Smith, Introduction to infrared spectroscopy, in Fundamentals of fourier transform infrared spectroscopy (CRC Press, Boca Raton, 1996), pp.1–18

    Google Scholar 

  51. R. Farahmandfar, R. Esmaeilzadeh Kenari, M. Asnaashari, D. Shahrampour, T. Bakhshandeh, Food Sci. Nutr. 7(2), 465–475 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. P. Kuppusamy, M.M. Yusoff, N.R. Parine, N. Govindan, Saudi J. Biol. Sci. 22(3), 293–301 (2015)

    Article  PubMed  Google Scholar 

  53. A.K.G. Harish, K. Ram, B. Singh, M. Phulwaria, N. Shekhawat, Libyan Agr. Res. Cent. J. Int. 2, 150–154 (2011)

    Google Scholar 

  54. A. Barchan, M. Bakkali, A. Arakrak, R. Pagán, A. Laglaoui, Int. J. Curr. Microbiol. Appl. Sci. 3, 1–15 (2014)

    Google Scholar 

  55. R. Saad, F. Asmani, M. Saad, M. Hussain, J. Khan, M. Kaleemullah, N.B. Othman, A. Tofigh, E. Yusuf, Int. J. Pharmacogn. Phytochem. Res. 7, 166–174 (2015)

    Google Scholar 

  56. R. Abarca-Vargas, R.V. Guerrero, V.L. Petricevich, Clin. Exp. Pharmacol. 6, 1–2 (2016)

    Google Scholar 

  57. A. Mansouri, G. Embarek, E. Kokkalou, P. Kefalas, Food Chem. 89, 411–420 (2005)

    Article  CAS  Google Scholar 

  58. L.L. Mensour, F.S. Menezes, G.G. Leitao, A.S. Reis, T.C. Dos Santos, C.S. Coube, Phytother. Res. 15, 127–130 (2011)

    Article  Google Scholar 

  59. Fotie, Pharmacogn. Rev. 2, 6–19 (2008)

    CAS  Google Scholar 

  60. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y. Ju, J. Food Drug Anal. 22, 296–302 (2014)

    Article  CAS  PubMed  Google Scholar 

  61. M.A. Johari, H.Y. Khong, Adv. Pharmacol. Sci. 10, 1–4 (2019)

    Google Scholar 

  62. I.A. Almusallam, I.A.M. Ahmed, E.E. Babiker, F.Y. Al Juhaimi, G.J. Fadimu, M.A. Osman, S.A. Al Maiman, K. Ghafoor, H.A.S. Alqah, LWT 140, 110816 (2021)

    Article  CAS  Google Scholar 

  63. H. Nawaz, M. Aslam, S.T. Muntaha, Free Radic. Antioxid. 9, 5–11 (2019)

    Article  CAS  Google Scholar 

  64. A.I. Dirar, D.H.M. Alsaadi, M. Wada, M.A. Mohamed, T. Watanabe, H.P. Devkota, S. Afr. J. Bot. 120, 261–267 (2019)

    Article  CAS  Google Scholar 

  65. L. Jing, H. Ma, P. Fan, R. Gao, Z. Jia, BMC Complement. Altern. Med. 15, 1–12 (2015)

    Article  CAS  Google Scholar 

  66. S. Aryal, M.K. Baniya, K. Danekhu, P. Kunwar, R. Gurung, N. Koirala, Plants 8, 1–12 (2019)

    Article  Google Scholar 

  67. A.B. Shoib, A.M. Shahid, J. Taibah Univ. Sci. 9, 449–454 (2015)

    Article  Google Scholar 

  68. M.A. Soobrattee, V.S. Neergheen, A. Luximon-Ramma, O.I. Aruoma, T. Bahorun, Mutat. Res. Fundam. Mol. Mech. Mutagen. 579, 200–213 (2005)

    Article  CAS  Google Scholar 

  69. A. Wojdylo, J. Oszmianski, R. Czemerys, Food Chem. 105, 940–949 (2007)

    Article  CAS  Google Scholar 

  70. S.M.T. Gracia, M. Heinonen, E.N. Frankel, J. Agric. Food Chem. 45, 3362–3367 (1997)

    Article  Google Scholar 

  71. H. Noreen, N. Semmar, M. Farman, J.S.O. McCullagh, Asian Pac. J. Trop. Med. 10, 792–801 (2017)

    Article  CAS  PubMed  Google Scholar 

  72. D. Jain, S. Shrivastava, Int. J. Eng. Technol. Sci. Res. 4, 2394–3386 (2017)

    Google Scholar 

  73. L.F. Lobato-Silva, W. Paschoal Jr., G.S. Pinheiro, J.G. da Silva Filho, P.T.C. Freire, F.F. de Sousa, S.G.C. Moreiraa, CrystEngComm 21, 1–21 (2019)

    Article  Google Scholar 

  74. L.I.L. Favaro, V.M. Balcão, L.K.H. Rocha, E.C. Silva, J.M. Oliveira Jr., M.M.D.C. Vila, M. Tubino, J. Braz. Chem. Soc. 29, 2072–2088 (2018)

    CAS  Google Scholar 

  75. H.A. Deshpande, S.R. Bhalsing, Physiol. Mol. Biol. Plants 20, 89–94 (2014)

    Article  CAS  PubMed  Google Scholar 

  76. P. Kalailingam, K. Bhuvansehwari, B. Kunthavai, T. Evera, K. Rajendran, J. Planar Chromatogr. 25, 566–570 (2012)

    Article  Google Scholar 

  77. F. Zhang, B. Shen, W. Jiang, H. Yuan, H. Zhou, J. Nanopart. Res. 21, 1–11 (2019)

    Article  Google Scholar 

  78. I. Elsayed, M. Mashaly, F. Eltaweel, M.A. Jackson, E.B. Hassan, Fuel 221, 407–416 (2018)

    Article  CAS  Google Scholar 

  79. M.S. Mirhosseyni, F. Nemati, A. Elhampour, J. Iran. Chem. Soc. 14, 791–801 (2016)

    Article  Google Scholar 

  80. J.G. Shao, X.C. Xie, Y.J. Xi, X.N. Liu, Y.X. Yang, Glass Phys. Chem. 39, 329–335 (2013)

    Article  CAS  Google Scholar 

  81. F. Alemi-Tameh, J. Safaei-Ghomi, M. Mahmoudi-Hashemi, R. Teymuri, Res. Chem. Intermed. 42, 6391–6406 (2016)

    Article  CAS  Google Scholar 

  82. Y.L. Che, Y. Xu, R.J. Wang, L. Chen, Anal. Bioanal. Chem. 409, 4709–4718 (2017)

    Article  CAS  PubMed  Google Scholar 

  83. H.T. Zhou, X.F. Yu, G.M. Zhou, Mol. Med. Rep. 15, 2823–2828 (2017)

    Article  CAS  PubMed  Google Scholar 

  84. S. Cong, Q. Tong, Q. Peng, T. Shen, X. Zhu, Y. Xu, S. Qi, Mol. Med. Rep. 22(6), 5392–5398 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. S.D.C. Beristain-Bauza, P. Hernández-Carranza, T.S. Cid-Pérez, R. Ávila-Sosa, I.I. Ruiz-López, C.E. Ochoa-Velasco, Food Rev. Int. 35(5), 407–426 (2019)

    Article  CAS  Google Scholar 

  86. J.O. Akullo, B. Kiage, D. Nakimbugwe, J. Kinyuru, Heliyon 8(9), e10457 (2022)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. A. Borges, H. José, V. Homem, M. Simões, Antibiotics 9(2), 1–19 (2020)

    Article  Google Scholar 

  88. Q.L. Ren, Q. Wang, X.Q. Zhang, M. Wang, H. Hu, J.J. Tang, X.L. Li, Chin. J. Integr. Med. 11655, 1–12 (2023)

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

PA conducting experiments, interpreting the results, writing original draft. PK concept formulation reviewing and editing the original draft, supervision of the manuscript.

Corresponding author

Correspondence to Prajya Arya.

Ethics declarations

Conflict of interest

The authors declare that they have no known personal relationships and financial interests that could have appeared to influence the work reported in this research paper.

Ethical approval

This research does not include any animal or human participants for experiments.

Informed consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, P., Kumar, P. Phytochemical, phase transition, FTIR, and antimicrobial characterization of defatted Trigonella foenum graecum seed extract as affected by solvent polarity. Food Measure 17, 5234–5246 (2023). https://doi.org/10.1007/s11694-023-02028-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02028-x

Keywords

Navigation