Skip to main content

Advertisement

Log in

Valorization of fruit seeds by polyphenol recovery using microwave-assisted aqueous extraction: modelling and optimization of process parameters

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Fruit seeds are by-products of fruit processing industries which are rich in bioactive compounds including phenolic compounds. In this study, the efficiency of the microwave-assisted aqueous extraction (MAAE) technique on the recovery of total phenolic content (TPC) from jackfruit, jamun and papaya seeds was explored. The process with three independent parameters (microwave power, treatment time and seed powder to solvent ratio) was developed and optimized individually for all three seeds using both response surface methodology (RSM) and artificial neural network- genetic algorithm (ANN- GA) to maximize the response (TPC). The value of TPC at the RSM optimized condition was 8.79 mg GAE/100 g, 211.87 mg GAE/100 g and 31.38 mg GAE/100 g and at the ANN optimized condition were 30.09 mg GAE/100 g, 252.01 mg GAE/100 g and 37.55 mg GAE/100 g for jackfruit, jamun and papaya seed, respectively, which were significantly higher than that of the control extract. Moreover, the ANN model for all three seeds displayed better performance with higher extraction yield and fewer statistical errors as compared to RSM. Hence, the study concludes that MAAE could be an excellent alternative to extract phenolic compounds from fruit seeds with maximum yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

MAAE:

Microwave-assisted aqueous extraction

RSM:

Response surface methodology

ANN-GA:

Artificial neural network- genetic algorithm

TPC:

Total phenolic content

GAE:

Gallic acid equivalent

BBD:

Box-Behnken design

FC:

Folin-Ciocalteu

ANOVA:

Analysis of variance

Y:

Predicted value of the response

b:

Regression coefficients

X:

Independent variables

AAD:

Average absolute deviation

MSE:

Mean square error

RMSE:

Root mean square error

NMSE:

Normalized mean square error

NRMSE:

Normalized root mean square error

MPE:

Mean percentage error

R2 :

Coefficient of determination

SD:

Standard deviation

References

  1. P. Rao, V. Rathod, Valorization of food and agricultural waste: a step towards greener future. Chem. Rec. 19(9), 1858–1871 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. N.A. Sagar, S. Pareek, S. Sharma, E.M. Yahia, M.G. Lobo, Fruit and vegetable waste: bioactive compounds, their extraction, and possible utilization. Compr. Rev. Food Sci. Food Saf. 17(3), 512–531 (2018)

    Article  CAS  PubMed  Google Scholar 

  3. J. Majerska, A. Michalska, A. Figiel, A review of new directions in managing fruit and vegetable processing by-products. Trends Food Sci. Technol. 88, 207–219 (2019)

    Article  CAS  Google Scholar 

  4. A. Patra, S. Abdullah, R.C. Pradhan, Review on the extraction of bioactive compounds and characterization of fruit industry by-products. Bioresour. Bioprocess. (2022). https://doi.org/10.1186/s40643-022-00498-3

    Article  Google Scholar 

  5. J. Banerjee, R. Singh, R. Vijayaraghavan, D. MacFarlane, A.F. Patti, A. Arora, Bioactives from fruit processing wastes: green approaches to valuable chemicals. Food Chem. 225, 10–22 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. S. Pathania, N. Kaur, Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydr. Diet. Fibre 27, 100295 (2022)

    Article  CAS  Google Scholar 

  7. H.H. Wijngaard, C. Rößle, N. Brunton, A survey of Irish fruit and vegetable waste and by-products as a source of polyphenolic antioxidants. Food Chem. 116(1), 202–207 (2009)

    Article  CAS  Google Scholar 

  8. A. Patra, S. Abdullah, R.C. Pradhan, Optimization of ultrasound-assisted extraction of ascorbic acid, protein and total antioxidants from cashew apple bagasse using artificial neural network-genetic algorithm and response surface methodology. J. Food Process. Preserv. 46(3), 1–17 (2022). https://doi.org/10.1111/jfpp.16317

    Article  CAS  Google Scholar 

  9. J. Ou, M. Wang, J. Zheng, S. Ou, Positive and negative effects of polyphenol incorporation in baked foods. Food Chem. 284, 90–99 (2019)

    Article  CAS  PubMed  Google Scholar 

  10. R. Romeo, A. De Bruno, V. Imeneo, A. Piscopo, M. Poiana, Evaluation of enrichment with antioxidants from olive oil mill wastes in hydrophilic model system. J. Food Process. Preserv. 43(11), e14211 (2019)

    Article  CAS  Google Scholar 

  11. H. Cai, S. You, Z. Xu, Z. Li, J. Guo, Z. Ren, C. Fu, Novel extraction methods and potential applications of polyphenols in fruit waste: a review. J. Food Meas. Charact. 15(4), 3250–3261 (2021)

    Article  Google Scholar 

  12. S. Abdullah, S. Karmakar, S. Mishra, R.C. Pradhan, Ultrafiltration of cashew apple juice using hollow fibers for shelf life extension: process optimization, flux modelling and storage study. J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01790-8

    Article  Google Scholar 

  13. M. Simsek, G. Sumnu, S. Sahin, Microwave assisted extraction of phenolic compounds from sour cherry pomace. Sep. Sci. Technol. 47(8), 1248–1254 (2012)

    Article  CAS  Google Scholar 

  14. S. Abdullah, R.C. Pradhan, S. Mishra, Effect of cellulase and tannase on yield, ascorbic acid and other physicochemical properties of cashew apple juice. Fruits 76(2), 51–60 (2021). https://doi.org/10.17660/TH2021/76.2.1

    Article  CAS  Google Scholar 

  15. S. Abdullah, R.C. Pradhan, D. Pradhan, S. Mishra, Modeling and optimization of pectinase-assisted low-temperature extraction of cashew apple juice using artificial neural network coupled with genetic algorithm. Food Chem. 339, 127862 (2021). https://doi.org/10.1016/j.foodchem.2020.127862

    Article  CAS  PubMed  Google Scholar 

  16. J.L. Pilkington, C. Preston, R.L. Gomes, Comparison of response surface methodology (RSM) and artificial neural networks (ANN) towards efficient extraction of artemisinin from Artemisia annua. Ind. Crops Prod. 58, 15–24 (2014). https://doi.org/10.1016/j.indcrop.2014.03.016

    Article  CAS  Google Scholar 

  17. S. Jaddu, S. Abdullah, M. Dwivedi, R.C. Pradhan, Optimization of functional properties of plasma treated kodo millet (open air multipin) using response surface methodology (RSM) and artificial neural network with genetic algorithm (ANN-GA). J. Food Process. Eng. (2022). https://doi.org/10.1111/jfpe.14207

    Article  Google Scholar 

  18. S. Jaddu, S. Abdullah, M. Dwivedi, R.C. Pradhan, Multipin cold plasma electric discharge on hydration properties of kodo millet flour: modelling and optimization using response surface methodology and artificial neural network—genetic algorithm. Food Chem. 5, 100132 (2022). https://doi.org/10.1016/j.fochms.2022.100132

    Article  CAS  Google Scholar 

  19. G. Patel, A. Patra, S. Abdullah, M. Dwivedi, Indian jujube (Ziziphus mauritiana L.) fruit juice extraction using cellulase enzyme: Modelling and optimization of approach by ANN-GA. Appl. Food Res. 2(1), 100080 (2022). https://doi.org/10.1016/j.afres.2022.100080

    Article  CAS  Google Scholar 

  20. D. Pradhan, S. Abdullah, R.C. Pradhan, Optimization of pectinase assisted extraction of chironji (Buchanania lanzan) fruit juice using response surface methodology and artificial neural network. Int. J. Fruit Sci. 20(S2), S318–S336 (2020). https://doi.org/10.1080/15538362.2020.1734895

    Article  Google Scholar 

  21. D. Pradhan, S. Abdullah, C. Pradhan, Chironji (Buchanania lanzan) fruit juice extraction using cellulase enzyme: modelling and optimization of process by artificial neural network and response surface methodology. J. Food Sci. Technol. (2020). https://doi.org/10.1007/s13197-020-04619-8

    Article  PubMed  PubMed Central  Google Scholar 

  22. S. Sahin, R. Samli, Z. Birteks, A.S. Tan, F.J. Barba, F. Chemat, G. Cravotto, J.M. Lorenzo, Solvent-free microwave-assisted extraction of polyphenols from olive tree leaves: antioxidant and antimicrobial properties. Molecules (2017). https://doi.org/10.3390/molecules22071056

    Article  PubMed  PubMed Central  Google Scholar 

  23. A. Patra, S. Abdullah, R.C. Pradhan, Microwave-assisted extraction of bioactive compounds from cashew apple (Anacardium occidenatale L.) bagasse: modeling and optimization of the process using response surface methodology. J. Food Meas. Charact. 15(5), 4781–4793 (2021)

    Article  Google Scholar 

  24. X.L. Bai, T.L. Yue, Y.H. Yuan, H.W. Zhang, Optimization of microwave-assisted extraction of polyphenols from apple pomace using response surface methodology and HPLC analysis. J. Sep. Sci. 33(23–24), 3751–3758 (2010). https://doi.org/10.1002/jssc.201000430

    Article  CAS  PubMed  Google Scholar 

  25. O.R. Alara, N.H. Abdurahman, Microwave-assisted extraction of phenolics from Hibiscus sabdariffa calyces: kinetic modelling and process intensification. Ind. Crops Prod. 137, 528–535 (2019)

    Article  CAS  Google Scholar 

  26. T.V. Fonteles, A.K.F. Leite, A.R.A. da Silva, F.A.N. Fernandes, S. Rodrigues, Sonication effect on bioactive compounds of cashew apple bagasse. Food Bioprocess. Technol. 10(10), 1854–1864 (2017)

    Article  CAS  Google Scholar 

  27. H.N. Sin, S. Yusof, N.S.A. Hamid, R.A. Rahman, Optimization of enzymatic clarification of sapodilla juice using response surface methodology. J. Food Eng. 73(4), 313–319 (2006). https://doi.org/10.1016/j.jfoodeng.2005.01.031

    Article  CAS  Google Scholar 

  28. K. Vivek, S. Mishra, R.C. Pradhan, Optimization of ultrasound-assisted enzymatic extraction of Sohiong (Prunus nepalensis) juice. J. Food Process. Eng. 42(1), 1–9 (2018). https://doi.org/10.1111/jfpe.12948

    Article  CAS  Google Scholar 

  29. H. Nourbakhsh, Z. Emam-Djomeh, M. Omid, H. Mirsaeedghazi, S. Moini, Prediction of red plum juice permeate flux during membrane processing with ANN optimized using RSM. Comput. Electron. Agric. 102, 1–9 (2014). https://doi.org/10.1016/j.compag.2013.12.017

    Article  Google Scholar 

  30. J. Prakash Maran, V. Sivakumar, K. Thirugnanasambandham, R. Sridhar, Artificial neural network and response surface methodology modeling in mass transfer parameters predictions during osmotic dehydration of Carica papaya L. Alex. Eng. J. 52(3), 507–516 (2013). https://doi.org/10.1016/j.aej.2013.06.007

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Abdullah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoj, A.A., Fathima, A., Naushad, B. et al. Valorization of fruit seeds by polyphenol recovery using microwave-assisted aqueous extraction: modelling and optimization of process parameters. Food Measure 17, 4280–4293 (2023). https://doi.org/10.1007/s11694-023-01955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01955-z

Keywords

Navigation