Skip to main content
Log in

Determination of iron species in food samples with dual direct immersion single-drop microextraction followed by graphite furnace atomic absorption spectrometry

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

A novel procedure of dual direct immersion single-drop microextraction (DDI-SDME) was developed for the sequential separation and preconcentration of Fe(III) and Fe(II) followed by graphite furnace atomic absorption spectrometry determination. At pH 1.5, Fe(III) can selectively react with N-benzoyl-N-phenylhydroxylamine (BPHA) to form the hydrophobic complexes which can be extracted into one organic drop, while Fe(II) remained in the solution. Then, another organic drop containing BPHA was immersed in the sample solution after the extraction of Fe(III) for the preconcentration of Fe(II) at pH 4.5. This procedure eliminated the time-consuming and labor-intensive step of oxidation of Fe(II) or reduction of Fe(III), which may cause the incomplete conversion of the species and sample contamination. Main conditions influencing the separation and enrichment of Fe species were studied. Under the selected conditions, the detection limits of this procedure were 0.058 ng mL−1 and 0.074 ng mL−1 for Fe(III) and Fe(II) with relative standard deviations of 4.8% and 5.6%, respectively. Enrichment factors of 300-fold were obtained for Fe species. The proposed procedure was successfully utilized for detecting Fe(III) and Fe(II) in food samples. To evaluate accuracy of this procedure, a certified reference material of milk powder was analyzed, and the determined value was in good agreement with the certified value.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Feist, R. Sitko, Method for the determination of Pb, Cd, Zn, Mn and Fe in rice samples using carbon nanotubes and cationic complexes of batophenanthroline. Food Chem. 249, 38–44 (2018)

    Article  CAS  PubMed  Google Scholar 

  2. S.K. Grewal, K.P. Sharma, R.D. Bharadwaj, V. Hegde, S. Tripathi, S. Singh, P.K. Jain, P.K. Agrawal, B. Mondal, Understanding genotypic variation and identification of promising genotypes for iron and zinc content in chickpea (Cicer arietinum L.). J. Food Compos. Aanl. 88, 103458 (2020). https://doi.org/10.1016/j.jfca.2020.103458

    Article  CAS  Google Scholar 

  3. B. Peng, Y. Shen, Z. Gao, M. Zhou, Y. Ma, S. Zhao, Determination of total iron in water and foods by dispersive liquid–liquid microextraction coupled with microvolume UV–vis spectrophotometry. Food Chem. 176, 288–293 (2015)

    Article  CAS  PubMed  Google Scholar 

  4. M. Borzoei, M.A. Zanjanchi, H. Sadeghi-Aliabadi, L. Saghaie, Optimization of a methodology for determination of iron concentration in aqueous samples using a newly synthesized chelating agent in dispersive liquid–liquid microextraction. Food Chem. 264, 9–15 (2018)

    Article  CAS  PubMed  Google Scholar 

  5. A. Bazmandegan-Shamili, A.M. Haji Shabani, S. Dadfarnia, M. Saeidi, M. Rohani Moghadam. Spectrophotometric determination of iron species using ionic liquid ultrasound assisted dispersive liquid liquid microextraction. Turk. J. Chem. 39(5), 1059–1068 (2015)

    Article  CAS  Google Scholar 

  6. M.R. Moghadam, A.M.H. Shabani, S. Dadfarnia, Spectrophotometric determination of iron species using a combination of artificial neural networks and dispersive liquid–liquid microextraction based on solidification of floating organic drop. J. Hazard. Mater. 197, 176–182 (2011)

    Article  CAS  PubMed  Google Scholar 

  7. E. Kazemi, N. Shokoufi, F. Shemirani, Speciation and preconcentration of iron by cloud point extraction combined with fibre optic linear array detection spectrophotometry. Chem. Spec. Bioavailab. 23(4), 249–255 (2011)

    Article  CAS  Google Scholar 

  8. N.A. Kasa, E.G. Bakirdere, Determination of iron in licorice samples by slotted quartz tube flame atomic absorption spectrometry (FAAS) with matrix matching calibration strategy after complexation with Schiff base ligand-based dispersive liquid–liquid microextraction. Anal. Lett. 54(8), 1284–1294 (2021)

    Article  CAS  Google Scholar 

  9. F. Xu, J. Hu, J. Zhang, X. Hou, X. Jiang, Nanomaterials in speciation analysis of mercury, arsenic, selenium, and chromium by analytical atomic/molecular spectrometry. Appl. Spectrosc. Rev. 53(2–4), 333–348 (2018)

    Article  CAS  Google Scholar 

  10. W. Zou, C. Li, J. Hu, X. Hou, Selective determination of Cr(VI) and non-chromatographic speciation analysis of inorganic chromium by chemical vapor generation-inductively coupled plasma mass spectrometry. Talanta 218, 121128 (2020). https://doi.org/10.1016/j.talanta.2020.121128

    Article  CAS  PubMed  Google Scholar 

  11. H. Yu, H. Du, L. Wu, R. Li, Q. Sun, X. Hou, Trace arsenic speciation analysis of bones by high performance liquid chromatography-inductively coupled plasma mass spectrometry. Microchem .J. 141, 176–180 (2018)

    Article  CAS  Google Scholar 

  12. W.I. Mortada, M.M. El-Defrawy, E. Erfan, H.A. El-Asmy, Cloud point extraction coupled with back-extraction for speciation of inorganic vanadium in water and determination of total vanadium in food samples by ICP-OES. J. Food Compos. Anal. 108, 104445 (2022). https://doi.org/10.1016/j.jfca.2022.104445

    Article  CAS  Google Scholar 

  13. M. Saraiva, P. Jitaru, J.J. Sloth, Speciation analysis of Cr(III) and Cr(VI) in bread and breakfast cereals using species-specific isotope dilution and HPLC-ICP-MS. J. Food Compos. Anal. 102, 103991 (2021). https://doi.org/10.1016/j.jfca.2021.103991

    Article  CAS  Google Scholar 

  14. R. Clough, C.F. Harrington, S.J. Hill, Y. Madrid, J.F. Tyson, Atomic spectrometry update: review of advances in elemental speciation. J. Anal. At. Spectrom. 37(7), 1387–1430 (2022)

    Article  CAS  Google Scholar 

  15. L. Yao, Y. Zhu, W. Xu, H. Wang, X. Wang, J. Zhang, H. Liu, C. Lin, Combination of dispersive solid phase extraction with dispersive liquid–liquid microextraction for the sequential speciation and preconcentration of Cr(III) and Cr(VI) in water samples prior to graphite furnace atomic absorption spectrometry determination. J. Ind. Eng. Chem. 72, 189–195 (2019)

    Article  CAS  Google Scholar 

  16. M. He, S. Su, B. Chen, B. Hu, Simultaneous speciation of inorganic selenium and tellurium in environmental water samples by polyaniline functionalized magnetic solid phase extraction coupled with ICP-MS detection. Talanta 207, 120314 (2020). https://doi.org/10.1016/j.talanta.2019.120314

    Article  CAS  PubMed  Google Scholar 

  17. P. Liang, R. Liu, Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Anal. Chim. Acta 602(1), 32–36 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. S.K. Pradhan, B. Ambade, P.K. Tarafder, Speciation of Fe(II) and Fe(III) in geological samples by solvent extraction and flame atomic absorption spectrometry (FAAS). At. Spectrosc. 40(4), 145–151 (2019)

    Article  CAS  Google Scholar 

  19. E.J. Kim, Y.S. Kim, J.M. Choi, Studies on solvent extraction using salphen for separative determination of trace Fe(II) and Fe(III) in water samples. Bull. Korean Chem. Soc. 29(1), 99–103 (2008)

    Article  CAS  Google Scholar 

  20. L. Xia, Y. Wu, Z. Jiang, S. Li, B. Hu, Speciation of Fe(III) and Fe(II) in water samples by liquid–liquid extraction combined with low-temperature electrothermal vaporization (ETV) ICP-AES. Int. J. Environ. Anal. Chem. 83(11), 953–962 (2003)

    Article  Google Scholar 

  21. C. Xiong, Z. Jiang, B. Hu, Speciation of dissolved Fe(II) and Fe(III) in environmental water samples by micro-column packed with N-benzoyl-N-phenylhydroxylamine loaded on microcrystalline naphthalene and determination by electrothermal vaporization inductively coupled plasma-optical emission spectrometry. Anal. Chim. Acta 559(1), 113–119 (2006)

    Article  CAS  Google Scholar 

  22. Y. Chen, Y. Huang, S. Feng, D. Yuan, Solid phase extraction coupled with a liquid waveguide capillary cell for simultaneous redox speciation analysis of dissolved iron in estuarine and coastal waters. Anal. Methods 7(12), 4971–4978 (2015)

    Article  CAS  Google Scholar 

  23. Y. Chen, S. Feng, Y. Huang, D. Yuan, Redox speciation analysis of dissolved iron in estuarine and coastal waters with on-line solid phase extraction and graphite furnace atomic absorption spectrometry detection. Talanta 137, 25–30 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. M. Asik, U. Ay, Speciation of iron (Fe2+, Fe3+) in various drinking waters using FAAS and UV–visible spectroscopy. Fresenius Environ. Bull. 29(8), 6591–6596 (2020)

    CAS  Google Scholar 

  25. T. Khezeli, A. Daneshfar, Development of dispersive micro-solid phase extraction based on micro and nano sorbents. Trends Anal. Chem. 89, 99–118 (2017)

    Article  CAS  Google Scholar 

  26. H. Shirkhanloo, A. Khaligh, H.Z. Mousavi, A. Rashidi, Ultrasound assisted-dispersive-micro-solid phase extraction based on bulky amino bimodal mesoporous silica nanoparticles for speciation of trace manganese(II)/(VII) ions in water samples. Microchem. J. 124, 637–645 (2016)

    Article  CAS  Google Scholar 

  27. L. Khalafi, P. Doolittle, J. Wright, Speciation and determination of low concentration of iron in beer samples by cloud point extraction. J. Chem. Educ. 95(93), 463–467 (2018)

    Article  CAS  Google Scholar 

  28. A. Alikhani, M. Eftekhari, M. Chamsaz, M. Gheibi, Paired-ion-based liquid phase microextraction for speciation of iron (Fe2+, Fe3+) followed by flame atomic absorption spectrometry. J. Food Meas. Charact. 12(1), 573–580 (2018)

    Article  Google Scholar 

  29. N.Y.D. Door, A. Bazmandegan-Shamili, M.R. Moghadam, Spectrophotometric determination of iron species using ultrasound-assisted temperature-controlled deep eutectic solvent dispersive liquid-phase microextraction and multisimplex optimization. Int. J. Environ. Anal. Chem. 101(2), 251–262 (2021)

    Article  Google Scholar 

  30. S. Bahar, R. Zakerian, Speciation of Fe(II) and Fe(III) by using dispersive liquid-liquid microextraction and flame atomic absorption spectrometry. J. Braz. Chem. Soc. 23(5), 944–950 (2012)

    Article  CAS  Google Scholar 

  31. M. Chamsaz, M. Eftekhari, S. Tafreshi, A. Yekkebashi, A. Eftekhari, Speciation and determination of iron using dispersive liquid–liquid microextraction based on solidification of organic drop followed by flame atomic absorption spectrometry. Int. J. Environ. Anal. Chem. 94(4), 348–355 (2014)

    Article  CAS  Google Scholar 

  32. M.R. Jamali, M. Tavakoli, R. Rahnama, Development of ionic liquid-based in situ solvent formation microextraction for iron speciation and determination in water and food samples. J. Mol. Liq. 216, 666–670 (2016)

    Article  CAS  Google Scholar 

  33. E.N. Tafti, A.M.H. Shabani, S. Dadfarnia, Z.D. Firouzabadi. In syringe-supramolecular dispersive liquid–liquid microextraction followed by atomic absorption spectrometric determination for iron species in water and total iron in food samples. Int. J. Environ. Anal. Chem. (2021). https://doi.org/10.1080/03067319.2021.1965135

    Article  Google Scholar 

  34. M.A. Jeannot, F.F. Cantwell, Solvent microextraction into a single drop. Anal. Chem. 68, 2236–2240 (1996)

    Article  CAS  PubMed  Google Scholar 

  35. I.D. Tegladza, T. Qi, T. Chen, K. Alorku, S. Tang, W. Shen, D. Kong, A. Yuan, J. Liu, H.K. Lee, Direct immersion single-drop microextraction of semi-volatile organic compounds in environmental samples: a review. J. Hazard. Mater. 393, 122403 (2020). https://doi.org/10.1016/j.jhazmat.2020.122403

    Article  CAS  Google Scholar 

  36. S. Chen, Y. Liu, C. Wang, J. Yan, D. Lu, Magnetic dispersive micro-solid phase extraction coupled with dispersive liquid–liquid microextraction followed by graphite furnace atomic absorption spectrometry for quantification of Se(IV) and Se(VI) in food samples. Food Addit. Contam. A 38(9), 1539–1550 (2021)

    Article  CAS  Google Scholar 

  37. J. Liu, Y. Chi, G. Jiang, C. Tai, J. Peng, J. Hu, Ionic liquid-based liquid-phase microextraction, a new sample enrichment procedure for liquid chromatography. J. Chromatogr. A 1026(1–2), 143–147 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. P. Liang, H. Sang, Z. Sun, Cloud point extraction and graphite furnace atomic absorption spectrometry determination of manganese(II) and iron(III) in water samples. J. Colloid Interface Sci 304(2), 486–490 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. X. Yan, N.J. Hendry, R. Kerrich, Speciation of dissolved iron(III) and iron(II) in water by on-line coupling of flow injection separation and preconcentration with inductively coupled plasma mass spectrometry. Anal. Chem. 72(8), 1879–1884 (2000)

    Article  CAS  PubMed  Google Scholar 

  40. X. Chang, N. Jiang, H. Zheng, Q. He, Z. Hu, Y. Zhai, Y. Cui, Solid-phase extraction of iron(III) with an ion-imprinted functionalized silica gel sorbent prepared by a surface imprinting technique. Talanta 71(1), 38–43 (2007)

    Article  CAS  PubMed  Google Scholar 

  41. X. Pu, B. Hu, Z. Jiang, C. Huang, Speciation of dissolved iron(II) and iron(III) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. Analyst 130(8), 1175–1181 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Research and Development Project of Hubei Province, China (No. 2020BBB068), Central Committee Guides Local Science and Technology Development Special Project of Hubei Province, China (No. 2019ZYYD059) and Nature Science Foundation of Hubei Province, China (No. 2020CFB400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shizhong Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Wang, Y., Yan, J. et al. Determination of iron species in food samples with dual direct immersion single-drop microextraction followed by graphite furnace atomic absorption spectrometry. Food Measure 17, 3745–3752 (2023). https://doi.org/10.1007/s11694-023-01907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01907-7

Keywords

Navigation