Skip to main content
Log in

Paired-ion-based liquid phase microextraction for speciation of iron (Fe2+, Fe3+) followed by flame atomic absorption spectrometry

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Paired-ion-based dispersive liquid–liquid microextraction as a simple, rapid and sensitive technique was used for speciation and determination of trace levels of iron (Fe2+, Fe3+) in different water samples. In this method, 4,5-dihydroxy-1,3-benzenedisulfonic acid (tiron) was used as the complexing agent to form anionic complex with Fe3+ at pH 3 followed by addition of cetyl pyridinium chloride (CPC) as a positive counter ion to form a hydrophobic complex of Fe(ІІІ)–tiron–CPC. At this pH, Fe2+ complex (Fe2+–tiron–CPC) is not stable and therefore remains in the sample solution. The total Fe was determined after the oxidation of Fe2+ to Fe3+ with concentrated hydrogen peroxide and the concentration of Fe2+ was determined from the difference between the concentration of total Fe and the Fe3+. Different parameters such as pH, concentration of tiron, concentration of CPC, type and volume of disperser and extraction solvent were investigated and optimum conditions were selected. Under the optimum conditions, the calibration curve was linear in the range of 20–300 µg L−1 of Fe3+ with a correlation coefficient of 0.9988. The relative standard deviation (%) based on six replicate analysis of 50 µg L−1 of Fe3+ was 3.5%. In order to check the accuracy of the proposed method, the certified reference material (CRM-TMDW) was analyzed and the determined value was in good agreement with certified value. The proposed method was successfully applied for determination of iron species in local tap, spring, river water and food samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S.B. Goldhaber, Regul. Toxicol. Pharmacol. 38, 232–242 (2003)

    Article  CAS  Google Scholar 

  2. S. Pehkonen, Analyst 120, 2655–2663 (1995)

    Article  CAS  Google Scholar 

  3. M. Chamsaz, M. Eftekhari, S. Tafreshi, A. Yekkebashi, A. Eftekhari, Int. J. Environ. Anal. Chem. 94(4), 348–355 (2014)

    Article  CAS  Google Scholar 

  4. S.O. Fakayode, A.G. King, M. Yakubu, A.K. Mohammed, D.A. Pollard, J. Chem. Educ. 89(1), 109–113 (2012)

    Article  CAS  Google Scholar 

  5. T. Shamspur, I. Sheikhshoaie, M.H. Mashhadizadeh, J. Anal. At. Spectrom. 20, 476–478 (2005)

    Article  CAS  Google Scholar 

  6. K. Uysal, Y. Emre, E. Kose, Microchem. J 90(1), 67–70 (2008)

    Article  CAS  Google Scholar 

  7. Z.O. Tesfaldet, J.F. van Staden, R.I. Stefan, Talanta 64(5), 1189–1195 (2004)

    Article  CAS  Google Scholar 

  8. R. Segura, M.I. Toral, V. Arancibia, Talanta 75(4), 973–977 (2008)

    Article  CAS  Google Scholar 

  9. A. Atanassova, R. Lam, D.B. Zamble, Anal. Biochem. 335(1), 103–111 (2004)

    Article  CAS  Google Scholar 

  10. A.M. Ure, L.R.P. Butler, R.O. Scott, R. Jenkins, Spectrochim. Acta B 52, 409–420 (1997)

    Article  Google Scholar 

  11. M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A 1116, 1–9 (2006)

    Article  CAS  Google Scholar 

  12. M. Eftekhari, F. Javedani-Asleh, M. Chamsaz, Food Anal. Methods 9(7), 1985–1992 (2016)

    Article  Google Scholar 

  13. K. Ozutsum, Y. Uchima, T. Kawashima, Anal. Sci. 6, 573–577 (1990)

    Article  Google Scholar 

  14. B. Ebrahimpour, Y. Yamini, M. Moradi, J. Pharm. Biomed. Anal. 66, 264–270 (2012)

    Article  CAS  Google Scholar 

  15. S.M. Yousefi, F. Shemirani, J.Hazard. Mater. 254–255, 134–140 (2013)

    Article  Google Scholar 

  16. S. Bahar, R. Zakerian, J. Braz. Chem. Soc. 23, 944–950 (2012)

    Article  CAS  Google Scholar 

  17. M. Rohani Moghadam, A.M. Haji Shabani, S. Dadfarnia, J. Hazard. Mater. 197, 176–182 (2011)

    Article  Google Scholar 

  18. G. Khayatian, S. Hassanpoor, J. Chin. Chem. Soc. 59, 659–666 (2012)

    Article  CAS  Google Scholar 

  19. A.B. Tabrizi, J. Hazard. Mater. 183, 688–693 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Ferdowsi University of Mashhad, Iran for its financial support. Grant Number: 4/442.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud Chamsaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alikhani, A., Eftekhari, M., Chamsaz, M. et al. Paired-ion-based liquid phase microextraction for speciation of iron (Fe2+, Fe3+) followed by flame atomic absorption spectrometry. Food Measure 12, 573–580 (2018). https://doi.org/10.1007/s11694-017-9669-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-017-9669-0

Keywords

Navigation