Skip to main content
Log in

Bimetallic metal–organic framework derived Mn, N co-doped Co-Carbon for electrochemical detection of nitrite

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Detection and control of nitrite are major concerns in recent years for ensuring food and environmental safety. In this study, Mn, N co-doped Co-Carbons (CoMnN-Cs) were synthesized by calcination of bimetallic Co-Mn zeolite-imidazolate framework (CoMnZIF-67) materials at different temperatures (600–900 °C) in nitrogen atmosphere. Many characterizations, such as scanning electron microscope (SEM), elemental mapping, and, N2 adsorption–desorption were performed to analyze the morphology, structure, and composition of the CoMnN-Cs. SEM revealed the generation of rich carbon nanotubes (CNTs). Mn-doping was obtained, which could be seen from the elemental mapping. The characterization also revealed that the pyrolysis temperature has an important effect to catalytic activities. From obtained results, it was found that the CoMnN-Cs prepared at 800 °C (CoMnN-Cs-800), showed better detection performance compared with CoMnN-Cs developed at other temperatures. As a result, the CoMnN-Cs-800-based sensor manifested an extended linear range (from 0.2 to 7000 μM), a low detection limit of 0.16 μM, and high sensitivity. Meanwhile, the developed sensor exhibited good selectivity, reproducibility, and long-term stability. Moreover, the sensor achieved satisfactory recoveries for the quantification of nitrite in tap water and sausage samples. This study implies CoMnN-Cs-800 is a promising material for the measurement of nitrite.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

CoMnN-Cs:

Mn, N co-doped Co-Carbons

CoMnZIF-67:

Co-Mn zeolite-imidazolate framework

CoMnN-Cs-800:

Mn, N co-doped Co-Carbons prepared at 800 °C

NPs:

Nanoparticles

MOFs:

Metal–organic frameworks

ZIFs:

Zeolitic imidazolate frameworks

ORR:

Oxygen reduction reaction

2-MeI:

2-Methylimidazole

SEM:

Scanning electron microscope

HRTEM:

High-resolution transmission electron microscopy

SAED:

Selected area electron diffraction

XRD:

X-ray diffraction

XPS:

X-ray photoelectron spectroscopy

MGCE:

Magnetic glassy carbon electrode

CNTs:

Carbon nanotubes

CoN-Cs-800:

N doped Co-Carbon prepared at 800 °C

CVs:

Cyclic voltammograms

LOD:

Limit of detection

References

  1. K. Wang, C. Wu, F. Wang, C. Liu, C. Yu, G. Jiang, Electrochim. Acta (2018). https://doi.org/10.1016/j.electacta.2018.07.228

    Article  PubMed  PubMed Central  Google Scholar 

  2. X. Meng, X. Xiao, H. Pang, Front. Chem. (2020). https://doi.org/10.3389/fchem.2020.00330

    Article  PubMed  PubMed Central  Google Scholar 

  3. Z. Yang, X. Zhou, Y. Yin, W. Fang, Anal. Lett. (2021). https://doi.org/10.1080/00032719.2021.1897134

    Article  Google Scholar 

  4. M. Rostami, G. Abdi, S.H. Kazemi, A. Alizadeh, Electroanal. Chem. (2019). https://doi.org/10.1016/j.jelechem.2019.113239

    Article  Google Scholar 

  5. M. Shariati-Rad, M. Irandoust, S. Mohammadi, Spectrochim. Acta A (2015). https://doi.org/10.1016/j.saa.2015.04.083

    Article  Google Scholar 

  6. H. Kodamatani, S. Yamazaki, K. Saito, T. Tomiyasu, Y. Komatsu, J. Chromatogr. A (2009). https://doi.org/10.1016/j.chroma.2009.01.096

    Article  PubMed  Google Scholar 

  7. T. Miyado, Y. Tanaka, H. Nagai, S. Takeda, K. Saito, K. Fukushi et al., J. Chromatogr. A (2004). https://doi.org/10.1016/j.chroma.2004.08.037

    Article  PubMed  Google Scholar 

  8. R. Ahmad, T. Mahmoudi, M.S. Ahn, J.Y. Yoo, Y.B. Hahn, J. Colloid Interface Sci. (2018). https://doi.org/10.1016/j.jcis.2018.01.052

    Article  PubMed  Google Scholar 

  9. N. Jaiswal, I. Tiwari, C.W. Foster, C.E. Banks, Electrochim. Acta (2017). https://doi.org/10.1016/j.electacta.2017.01.007

    Article  Google Scholar 

  10. W. Qiu, H. Tanaka, F. Gao, Q. Wang, M. Huang, Adv. Powder Technol. (2019). https://doi.org/10.1016/j.apt.2019.06.022

    Article  Google Scholar 

  11. H. Karimi-Maleh, H. Beitollahi, P. Senthil Kumar, S. Tajik, P. Mohammadzadeh Jahani, F. Karimi et al., Food Chem. Toxicol. (2022). https://doi.org/10.1016/j.fct.2022.112961

    Article  PubMed  Google Scholar 

  12. H. Shi, F. Chen, S. Zhao, C. Ye, C.-T. Lin, J. Zhu et al., J. Food Meas. Charact. (2021). https://doi.org/10.1007/s11694-021-01030-5

    Article  Google Scholar 

  13. Z. Yang, Y. Zhong, X. Zhou, W. Zhang, Y. Yin, W. Fang et al., J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-021-01270-5

    Article  Google Scholar 

  14. P. Nasehi, M.S. Moghaddam, N. Rezaei-savadkouhi, M. Alizadeh, M.N. Yazdani, H. Agheli, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-022-01321-5

    Article  Google Scholar 

  15. B. You, N. Jiang, M. Sheng, W.S. Drisdell, J. Yano, Y. Sun, ACS Catal. (2015). https://doi.org/10.1021/acscatal.5b02325

    Article  Google Scholar 

  16. H. Niu, S. Liu, Y. Cai, F. Wu, X. Zhao, Microporous Mesoporous Mater. (2016). https://doi.org/10.1016/j.micromeso.2015.07.027

    Article  Google Scholar 

  17. Y. Han, Y. Wang, T. Ma, W. Li, J. Zhang, M. Zhang, Front. Chem. Sci. Eng. (2020). https://doi.org/10.1007/s11705-019-1902-4

    Article  Google Scholar 

  18. P. Zhang, B.Y. Guan, L. Yu, X.W.D. Lou, Angew. Chem. Int. Ed. (2017). https://doi.org/10.1002/anie.201702649

    Article  Google Scholar 

  19. X. Zhang, A. Yuan, X. Mao, Q. Chen, Y. Huang, Sens. Actuators B (2019). https://doi.org/10.1016/j.snb.2019.126928

    Article  Google Scholar 

  20. M. Wang, Y. Liu, L. Yang, K. Tian, L. He, Z. Zhang et al., Sens. Actuators B (2019). https://doi.org/10.1016/j.snb.2018.11.083

    Article  Google Scholar 

  21. X.-Z. Song, F.-F. Sun, S.-T. Dai, X. Lin, K.-M. Sun, X.-F. Wang, Inorg. Chem. Front. (2018). https://doi.org/10.1039/c8qi00043c

    Article  Google Scholar 

  22. M. Wang, M. Hu, B. Hu, C. Guo, Y. Song, Q. Jia et al., Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.04.018

    Article  PubMed  PubMed Central  Google Scholar 

  23. H. Karimi-Maleh, M.L. Yola, N. Atar, Y. Orooji, F. Karimi, P. Senthil Kumar et al., J. Colloid Interface Sci. (2021). https://doi.org/10.1016/j.jcis.2021.02.066

    Article  PubMed  Google Scholar 

  24. B.N. Bhadra, A. Vinu, C. Serre, S.H. Jhung, Mater. Today (2019). https://doi.org/10.1016/j.mattod.2018.10.016

    Article  Google Scholar 

  25. C. Carrillo-Carrion, Anal. Bioanal. Chem. (2020). https://doi.org/10.1007/s00216-019-02217-y

    Article  PubMed  Google Scholar 

  26. R.-B. Lin, S. Xiang, H. Xing, W. Zhou, B. Chen, Coord. Chem. Rev. (2019). https://doi.org/10.1016/j.ccr.2017.09.027

    Article  PubMed  Google Scholar 

  27. H. Li, L. Li, R.-B. Lin, W. Zhou, Z. Zhang, S. Xiang et al., EnergyChem (2019). https://doi.org/10.1016/j.enchem.2019.100006

    Article  Google Scholar 

  28. Z. Yang, W. Zhang, Y. Yin, W. Fang, H. Xue, Food Control (2022). https://doi.org/10.1016/j.foodcont.2021.108684

    Article  PubMed  PubMed Central  Google Scholar 

  29. J. Cai, Y. Li, M. Zhang, Z. Li, Inorg. Chem. (2019). https://doi.org/10.1021/acs.inorgchem.9b00733

    Article  PubMed  Google Scholar 

  30. Z. Yang, X. Zhou, Y. Yin, H. Xue, W. Fang, J. Alloys Compd. (2022). https://doi.org/10.1016/j.jallcom.2022.164915

    Article  Google Scholar 

  31. A.M. Mohamed, M. Ramadan, N.K. Allam, J. Energy Storage (2021). https://doi.org/10.1016/j.est.2020.102195

    Article  Google Scholar 

  32. Z. Wu, L.-P. Sun, Z. Zhou, Q. Li, L.-H. Huo, H. Zhao, Sens. Actuators B (2018). https://doi.org/10.1016/j.snb.2018.08.100

    Article  Google Scholar 

  33. X. Zhou, Y. Zhou, Z. Hong, X. Zheng, R. Lv, Electroanal. Chem. (2018). https://doi.org/10.1016/j.jelechem.2018.07.038

    Article  Google Scholar 

  34. A. Parkash, J. Porous Mater. (2021). https://doi.org/10.1007/s10934-021-01076-2

    Article  Google Scholar 

  35. G. Zhong, D. Liu, J. Zhang, J. Mater. Chem. A (2018). https://doi.org/10.1039/c7ta08268a

    Article  Google Scholar 

  36. J. Mao, P. Liu, J. Li, J. Yan, S. Ye, W. Song, J. Energy Chem. (2022). https://doi.org/10.1016/j.jechem.2022.04.047

    Article  Google Scholar 

  37. H. Zheng, F. Ma, H. Yang, X. Wu, R. Wang, D. Jia et al., Nano Res. (2022). https://doi.org/10.1007/s12274-021-3837-6

    Article  PubMed  PubMed Central  Google Scholar 

  38. C. Jiao, Z. Wang, X. Zhao, H. Wang, J. Wang, R. Yu et al., Angew. Chem. Int. Ed. (2019). https://doi.org/10.1002/anie.201811683

    Article  Google Scholar 

  39. L. Wang, Z. Wang, L. Xie, L. Zhu, X. Cao, ACS Appl. Mater. Interfaces (2019). https://doi.org/10.1021/acsami.9b03365

    Article  PubMed  PubMed Central  Google Scholar 

  40. Y.-M. Li, Z.-Y. Liu, Q.-Y. Zhang, Y.-J. Wang, G.-Q. Cui, Z. Zhao et al., Pet. Sci. (2022). https://doi.org/10.1016/j.petsci.2022.01.008

    Article  Google Scholar 

  41. X. Liu, L. Wang, G. Zhang, F. Sun, G. Xing, C. Tian et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127569

    Article  PubMed  PubMed Central  Google Scholar 

  42. X.-X. Li, P.-Y. Zhu, Q. Li, Y.-X. Xu, Y. Zhao, H. Pang, Rare Met. (2020). https://doi.org/10.1007/s12598-020-01412-6

    Article  Google Scholar 

  43. Z. Cai, I. Yamada, S. Yagi, ACS Appl. Mater. Interfaces (2020). https://doi.org/10.1021/acsami.9b19268

    Article  PubMed  PubMed Central  Google Scholar 

  44. J. Zhao, Z. Li, S. Yao, C. Hu, J. Wang, X. Feng, J. Mater. Sci.: Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03948-w

    Article  Google Scholar 

  45. C. Young, J. Kim, Y.V. Kaneti, Y. Yamauchi, ACS Appl. Energy Mater. (2018). https://doi.org/10.1021/acsaem.8b00103

    Article  Google Scholar 

  46. S. Wang, Z. Li, F. Duan, B. Hu, L. He, M. Wang et al., Anal. Chim. Acta (2019). https://doi.org/10.1016/j.aca.2018.09.064

    Article  PubMed  PubMed Central  Google Scholar 

  47. B. Lü, W. Qi, M. Luo, Q. Liu, L. Guo, Ind. Eng. Chem. Res. (2020). https://doi.org/10.1021/acs.iecr.0c00971

    Article  Google Scholar 

  48. B. Chen, G. Ma, Y. Zhu, Y. Xia, Sci. Rep. (2017). https://doi.org/10.1038/s41598-017-05636-y

    Article  PubMed  PubMed Central  Google Scholar 

  49. J. Balamurugan, T.D. Thanh, G. Karthikeyan, N.H. Kim, J.H. Lee, Biosens. Bioelectron. (2017). https://doi.org/10.1016/j.bios.2016.09.077

    Article  PubMed  Google Scholar 

  50. Y. Gong, L. Sun, H. Si, Y. Zhang, Y. Shi, L. Wu et al., Appl. Surf. Sci. (2020). https://doi.org/10.1016/j.apsusc.2019.144479

    Article  Google Scholar 

  51. W. Peng, X. Yang, L. Mao, J. Jin, S. Yang, J. Zhang et al., Chem. Eng. J. (2021). https://doi.org/10.1016/j.cej.2020.127157

    Article  PubMed  PubMed Central  Google Scholar 

  52. W. Wang, L. Kuai, W. Cao, M. Huttula, S. Ollikkala, T. Ahopelto et al., Angew. Chem. Int. Ed. (2017). https://doi.org/10.1002/anie.201708765

    Article  Google Scholar 

  53. B. Joshi, E. Samuel, Y.-I. Kim, G. Periyasami, M. Rahaman, S.S. Yoon, J. Mater. Sci. Technol. (2021). https://doi.org/10.1016/j.jmst.2020.06.028

    Article  Google Scholar 

  54. F. Gao, X. Cai, X. Wang, C. Gao, S. Liu, F. Gao et al., Sens. Actuators B (2013). https://doi.org/10.1016/j.snb.2013.06.020

    Article  Google Scholar 

  55. P. Balasubramanian, M. Velmurugan, S.-M. Chen, T.-W. Chen, Y.-T. Ye, J. Electrochem. Soc. (2019). https://doi.org/10.1149/2.0981908jes

    Article  Google Scholar 

  56. W. Zhang, C.-Y. Ge, L. Jin, S. Yoon, W. Kim, G.-R. Xu et al., Electroanal. Chem. (2021). https://doi.org/10.1016/j.jelechem.2021.115163

    Article  Google Scholar 

  57. M. Shivakumar, S. Manjunatha, K.N. Nithyayini, M.S. Dharmaprakash, K.L. Nagashree, Electroanal. Chem. (2021). https://doi.org/10.1016/j.jelechem.2021.115016

    Article  Google Scholar 

  58. B.P. Suma, M. Pandurangappa, Electroanalysis (2020). https://doi.org/10.1002/elan.202060091

    Article  Google Scholar 

  59. D. Chen, J. Jiang, X. Du, Talanta (2016). https://doi.org/10.1016/j.talanta.2016.05.003

    Article  PubMed  Google Scholar 

  60. Y. Haldorai, J.Y. Kim, A.T.E. Vilian, N.S. Heo, Y.S. Huh, Y.-K. Han, Sens. Actuators B (2016). https://doi.org/10.1016/j.snb.2015.12.032

    Article  Google Scholar 

  61. D. Cheng, X. Li, Y. Qiu, Q. Chen, J. Zhou, Y. Yang et al., Anal. Methods (2017). https://doi.org/10.1039/c6ay03164a

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work is supported by the “Lvyang Jinfeng” Plan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhengfei Yang, Huaiguo Xue or Weiming Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2850 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhang, W., Zhu, J. et al. Bimetallic metal–organic framework derived Mn, N co-doped Co-Carbon for electrochemical detection of nitrite. Food Measure 17, 1662–1670 (2023). https://doi.org/10.1007/s11694-022-01735-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01735-1

Keywords

Navigation