Skip to main content

Advertisement

Log in

Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This aim of this study was aimed to evaluate the impact of HHP (high hydrostatic pressure) pre-treatment on the drying behavior of cashew slices, water adsorption isotherms, on extraction kinetic of total phenolic compounds (TPC) and antioxidant activity (AA). The drying kinetics were performed for cashew slices without pre-treatment (control) and pre-treated with 200 MPa (HHP1), 350 MPa (HHP2) and 500 MPa (HHP3) at a temperature of 70 °C in an electric oven (1200 W). Drying kinetics experimental data were fitted using empirical and diffusive models (third type boundary condition). The kinetics of ultrasound-assisted (40 kHz and 132 W) extraction of total phenolic compounds (TPCs) were realized and was determined AA (ABTS• + , DPPH• and FRAP) and water adsorption isotherms. The application of pressure 500 MPa (HHP3) provided an increase in the moisture transport process, a higher drying rate and shorter process time (40%). The effective diffusivity ranged from 1.2546 × 10–8 m2 min−1 (control) to 3.2045 × 10–8 m2 min−1 (HHP3). The extraction of TPC he was higher in the time of 180 min, emphasis for HHP3 who presented 154.48 mg GAE 100 g−1. Higher retention percentages AA by the three methods were observed for the slices pre-treated (HHP3) and the adsorption isotherms which presented characteristic of the type II curves. Therefore, the results of this study provide information for the potential application of HHP as a drying pre- treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Research data are not shared.

References

  1. T.L. Honorato, M.C. Rabelo, L.R.B. Gonçalves, G.A.S. Pinto, S. Rodrigues, Fermentation of cashew apple juice to produce high added value products. World. J. Microbiol. Biotechnol. 23(10), 1409–1415 (2007). https://doi.org/10.1007/s11274-007-9381-z

    Article  CAS  Google Scholar 

  2. T. Prommajak, N. Leksawasdi, N. Rattanapanone, Biotechnological valorization of cashew apple: a review. Chiang Mai. Univ. J. Nat. Sci. 13(2), 159–182 (2014). https://doi.org/10.12982/CMUJNS.2014.0029

    Article  Google Scholar 

  3. C.S. Tamiello-Rosa, T.M. Cantu-Jungles, M. Iacomini, L.M. Cordeiro, Pectins from cashew apple fruit (Anacardium occidentale): extraction and chemical characterization. Carbohyd. Res. 483(107752), 1–6 (2019). https://doi.org/10.1016/j.carres.2019.107752

    Article  CAS  Google Scholar 

  4. E.F. Souza, M.R. Furtado, C.W. Carvalho, O. Freitas-Silva, L.M. Gottschalk, Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses. Int. J. Biol. Macromol. 146, 285–289 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.180

    Article  CAS  Google Scholar 

  5. H. Rajkumar, N.D. Ganesan, Effects of freeze-drying process on the production of cashew apple powder: Determination of bioactive compounds and fruit powder properties. J. Food Process. Preserv. 45(6), e15466 (2021). https://doi.org/10.1111/jfpp.15466

    Article  CAS  Google Scholar 

  6. J.P. Gouveia, R.S. de Moura, F.D.A. Almeida, A.M.D.V. Oliveira, M.M.D. Silva, Avaliação da cinética de secagem de caju mediante um planejamento experimental. Rev. Bras. de Eng. Agríc. e Ambient. 6, 471–474 (2002). https://doi.org/10.1590/S1415-43662002000300015

    Article  Google Scholar 

  7. P.M. Azoubel, Â.A. El-Aouar, R.V. Tonon, L.E. Kurozawa, G.C. Antonio, F.E.X. Murr, K.J. Park, Effect of osmotic dehydration on the drying kinetics and quality of cashew apple. Int. J. Food Sci. Technol. 44(5), 980–986 (2009). https://doi.org/10.1111/j.1365-2621.2008.01783

    Article  CAS  Google Scholar 

  8. D.C. Santos, E.N.A. de Oliveira, J.N. Martins, A.P.T. Rocha, Secagem da polpa de caju em secador de leito de jorro. Rev. Bras. de Tecnol. Agroind. (2015). https://doi.org/10.3895/rbta.v9n2.2028

    Article  Google Scholar 

  9. D.S. Bastos, P.M. do Gonçalves, C.T. de Andrade, L.K.G. de Araújo, R.M.H.M. da Leão, Microencapsulation of cashew apple (Anacardium occidentale, L) juice using a new chitosan–commercial bovine whey protein isolate system in spray drying. Food Bioprod. Process. 90(4), 683–692 (2012). https://doi.org/10.1016/j.fbp.2012.04.005

    Article  CAS  Google Scholar 

  10. G. Musielak, D. Mierzwa, J. Kroehnke, Food drying enhancement by ultrasound–A review. Trends. Food Sci. Technol. 56, 126–141 (2016). https://doi.org/10.1016/j.tifs.2016.08.003

    Article  CAS  Google Scholar 

  11. J.A. Moses, T. Norton, K. Alagusundaram, B.K. Tiwari, Novel drying techniques for the food industry. Food. Eng. Rev. 6, 43–55 (2014). https://doi.org/10.1007/s12393-014-9078-7

    Article  Google Scholar 

  12. M.L. Rojas, I. Silveira, P.E.D. Augusto, Ultrasound and ethanol pre-treatments to improve convective drying: drying, rehydration and carotenoid content of pumpkin. Food Bioprod. Process. 119, 20–30 (2020). https://doi.org/10.1016/j.fbp.2019.10.008

    Article  CAS  Google Scholar 

  13. N.C. Santos, R.L.J. Almeida, M.D.F.D. de Medeiros, R.T. Hoskin, M.R. da Silva Pedrini, Foaming characteristics and impact of ethanol pretreatment in drying behavior and physical characteristics for avocado pulp powder obtained by foam mat drying. J. Food Sci. 87(3), 1–12 (2022). https://doi.org/10.1111/1750-3841.16123

    Article  CAS  Google Scholar 

  14. D. Huang, K. Men, D. Li, T. Wen, Z. Gong, B. Sunden, Z. Wu, Application of ultrasound technology in the drying of food products. Ultrason. Sonochem. 63(5), 104950 (2020). https://doi.org/10.1016/j.ultsonch.2019.104950

    Article  CAS  Google Scholar 

  15. R. Osae, C. Zhou, B. Xu, W. Tchabo, H.E. Tahir, A.T. Mustapha, H. Ma, Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. J. Food Biochem. 43(5), e12832 (2019). https://doi.org/10.1111/jfbc.12832

    Article  CAS  Google Scholar 

  16. P.A. Ramos-Parra, C. García-Salinas, C.E. Rodríguez-López, N. García, G. García-Rivas, C. Hernández-Brenes, R.I.D. de la Garza, High hydrostatic pressure treatments trigger de novo carotenoid biosynthesis in papaya fruit (Carica papaya cv. Maradol). Food Chem. 277, 362–372 (2019). https://doi.org/10.1016/j.foodchem.2018.10.102

    Article  CAS  Google Scholar 

  17. N.R.S. Hulle, P.S. Rao, Effect of high-pressure pretreatments on structural and dehydration characteristics of aloe vera (Aloe barbadensis Miller) cubes. Drying. Technol. 34(1), 105–118 (2015). https://doi.org/10.1080/07373937.2015.1037887

    Article  CAS  Google Scholar 

  18. N. Palláres, H. Berrada, J. Tolosa, E. Ferrer, Effect of high hydrostatic pressure (HHP) and pulsed electric field (PEF) technologies on reduction of aflatoxins in fruit juices. LWT-Food Sci Technol 142, 111000 (2021). https://doi.org/10.1016/j.lwt.2021.111000

    Article  CAS  Google Scholar 

  19. J. Xi, S. Luo, The mechanism for enhancing extraction of ferulic acid from Radix Angelica sinensis by high hydrostatic pressure. Sep. Purif. Technol. 165, 208–213 (2016). https://doi.org/10.1016/j.seppur.2016.04.011

    Article  CAS  Google Scholar 

  20. K.O.P. Inada, S. Nunes, J.A. Martinez-Blazquez, F.A. Tomás-Barberán, D. Perrone, M. Monteiro, Effect of high hydrostatic pressure and drying methods on phenolic compounds profile of jabuticaba (Myrciaria jaboticaba) peel and seed. Food Chem. 309, 125794 (2020). https://doi.org/10.1016/j.foodchem.2019.125794

    Article  CAS  Google Scholar 

  21. U. Yucel, H. Alpas, A. Bayindirli, Evaluation of high pressure pretreatment for enhancing the drying rates of carrot, apple, and green bean. J. Food Eng. 98(2), 266–272 (2010). https://doi.org/10.1016/j.jfoodeng.2010.01.006

    Article  Google Scholar 

  22. L. Zhang, L. Liao, Y. Qiao, C. Wang, D. Shi, K. An, J. Hu, Effects of ultrahigh pressure and ultrasound pretreatments on properties of strawberry chips prepared by vacuum-freeze drying. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2019.125386

    Article  Google Scholar 

  23. L. Zhang, Y. Qiao, C. Wang, L. Liao, D. Shi, K. An, L. Shi, Influence of high hydrostatic pressure pretreatment on properties of vacuum-freeze dried strawberry slices. Food Chem. 331, 127203 (2020). https://doi.org/10.1016/j.foodchem.2020.127203

    Article  CAS  Google Scholar 

  24. A.O.A.C., Official methods of analysis of AOAC International, 20th edn. (AOAC international, Rockville, 2016)

    Google Scholar 

  25. A. Kaleta, K. Górnicki, Evaluation of drying models of apple (var. McIntosh) dried in a convective dryer. Int. J. Food Sci. Technol. 45(5), 891–898 (2010). https://doi.org/10.1111/j.1365-2621.2010.02230.x

    Article  CAS  Google Scholar 

  26. L.M. Diamante, R. Ihns, G.P. Savage, L. Vanhanen, A new mathematical model for thin layer drying of fruits. Int. J. Food Sci. Technol. 45(9), 1956–1962 (2010). https://doi.org/10.1111/j.1365-2621.2010.02345.x

    Article  CAS  Google Scholar 

  27. W.P. Silva, C.M.D.P.S. Silva, J.A.R. Sousa, V.S.O. Farias, Empirical and diffusion models to describe water transport into chickpea (Cicer arietinum L.). Int. J. Food Sci. Technol. 48(2), 267–273 (2013). https://doi.org/10.1111/j.1365-2621.2012.03183.x

    Article  CAS  Google Scholar 

  28. Silva, W.P., & Silva, C.M.D.P.S. (2008). LAB Fit Curve Fitting Software (Nonlinear Regression and Treatment of Data Program) V 7.2.50 (2008), online, available from world wide web: <www.labfit.net>, date of Accessed: 2020-April-10.

  29. N.C. Santos, R.L.J. Almeida, G.M. da Silva, V.M.D.A. Silva, V.H.D.A. Ribeiro, A.C.D.O. Brito, L.M.S. Rodrigues, R.M.S. Santos, M.M.T. Saraiva, Impact of pre-treatments with ethanol and freezing on drying slice papaya: drying performance and kinetic of ultrasound-assisted extraction of phenolics compounds. J. Sci. Food Agric. 102(11), 1–10 (2022). https://doi.org/10.1002/jsfa.12119

    Article  CAS  Google Scholar 

  30. A.V. Luikov, Analytical heat diffusion theory (Academic Press, Inc. Ltd, London, 1968)

    Google Scholar 

  31. W.P. Silva, J.W. Precker, C.M.D.P.S. Silva, J.P. Gomes, Determination of effective diffusivity and convective mass transfer coefficient for cylindrical solids via analytical solution and inverse method: application to the drying of rough rice. J. Food Eng. 98(3), 302–308 (2010). https://doi.org/10.1016/j.jfoodeng.2009.12.029

    Article  Google Scholar 

  32. N. Milićević, P. Kojić, M. Sakač, A. Mišan, J. Kojić, C. Perussello, B. Tiwari, Kinetic modelling of ultrasound-assisted extraction of phenolics from cereal brans. Ultrason. Sonochem. 79, 105761 (2021). https://doi.org/10.1016/j.ultsonch.2021.105761

    Article  CAS  Google Scholar 

  33. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. RiceEvans, Antioxidant activity applying an improved ABTS•+ radical cation decolorization assay. Free Radical Biol. Med. 26, 1231–1237 (1999)

    Article  CAS  Google Scholar 

  34. M.S.M. Rufino, R.E. Alves, E.S. Brito, S.M. Morais, C.G. Sampaio, J.P. Jimenez, F.D.S. Calixto, Determinação da atividade antioxidante total em frutas pela captura do radical livre DPPH•. Comunicado Técnico Embrapa. 127, 1–4 (2007)

    Google Scholar 

  35. M.M.R. do Socorro, R.E. Alves, E.S. de Brito, J. Pérez-Jiménez, F. Saura-Calixto, J. Mancini-Filho, Bioactive compounds and antioxidant capacities of non –traditional tropical fruits from Brazil. Food Chem. 121(4), 996–1002 (2010). https://doi.org/10.1016/j.foodchem.2010.01.037

    Article  CAS  Google Scholar 

  36. I.F. Benzie, J. Strain, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996). https://doi.org/10.1006/abio.1996.0292

    Article  CAS  Google Scholar 

  37. S. Arslan-Tontul, Moisture sorption isotherm, isosteric heat and adsorption surface area of whole chia seeds. LWT-Food Sci. Technol. 119, 108859 (2020). https://doi.org/10.1016/j.lwt.2019.108859

    Article  CAS  Google Scholar 

  38. J.V. García-Pérez, J.A. Cárcel, G. Clemente, A. Mulet, Water sorption isotherms for lemon peel at different temperatures and isosteric heats. LWT-Food Sci. Technol. 41(1), 18–25 (2008). https://doi.org/10.1016/j.lwt.2007.02.010

    Article  CAS  Google Scholar 

  39. C.R. Oswin, The kinetics of package life. III. the isotherm. J Soc. Chem. Ind. 65(12), 419–421 (1946). https://doi.org/10.1002/jctb.5000651216

    Article  CAS  Google Scholar 

  40. K.W. Lang, M.P. Steinberg, Predicting water activity from 0.30 to 0.95 of a multicomponent food formulation. J. Food Sci. 46(3), 670–672 (1981). https://doi.org/10.1111/j.1365-2621.1981.tb15320.x

    Article  CAS  Google Scholar 

  41. N.C. Santos, R.L.J. Almeida, G.M. da Silva, S.S. Monteiro, V.H. de Alcântara Ribeiro, A.P. de França Silva, M.M. de Almeida Mota, Influence of high hydrostatic pressure (HHP) pretreatment on plum (Prunus salicina) drying: drying approach, physical, and morpho-structural properties of the powder and total phenolic compounds. J. Food Process. Preserv. (2022). https://doi.org/10.1111/jfpp.16968

    Article  Google Scholar 

  42. W. Luo, S. Tappi, C. Wang, Y. Yu, S. Zhu, P. Rocculi, Study and optimization of high hydrostatic pressure (HHP) to improve mass transfer and quality characteristics of candied green plums (Prunus mume). J. Food Process. Preserv. 42(11), e13769 (2018). https://doi.org/10.1111/jfpp.13769

    Article  CAS  Google Scholar 

  43. E.V. Silva Júnior, L.L. Melo, R.A.B. Medeiros, Z.M.P. Barros, P.M. Azoubel, Influence of ultrasound and vacuum assisted drying on papaya quality parameters. LWT Food Sci. Technol. 97, 317–322 (2018). https://doi.org/10.1016/j.lwt.2018.07.017

    Article  CAS  Google Scholar 

  44. E.S. Silva, S.C.R. Brandão, A.L. da Silva, J.H.F. da Silva, A.C.D. Coêlho, P.M. Azoubel, Ultrasound-assisted vacuum drying of nectarine. J. Food Eng. 246, 119–124 (2019). https://doi.org/10.1016/j.jfoodeng.2018.11.013

    Article  CAS  Google Scholar 

  45. N.C. Santos, R.L.J. Almeida, G.M. Silva, S.S. Monteiro, A.M.M.C.N. André, Effect of ultrasound pre-treatment on the kinetics and thermodynamic properties of guava slices drying process. Innov. Food Sci. Emerg. Technol. 66(12), 102507 (2020). https://doi.org/10.1016/j.ifset.2020.102507

    Article  CAS  Google Scholar 

  46. N.C. Santos, R.L.J. Almeida, S.S. Monteiro, E.T. de Vilela Silva, V.M. de Alcântara Silva, A.M.M. André, V.H.A. Ribeiro, A.C.O. de Brito, Influence of ethanol and ultrasound on drying, bioactive compounds, and antioxidant activity of strawberries (Fragaria× ananassa). J. Indian Chem. Soc. 99(7), 100542 (2022). https://doi.org/10.1016/j.jics.2022.100542

    Article  CAS  Google Scholar 

  47. D. Verma, N. Kaushik, P.S. Rao, Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food Bioprocess. Technol. 7(5), 1281–1297 (2014). https://doi.org/10.1007/s11947-013-1124-6

    Article  CAS  Google Scholar 

  48. J.P. Ferreira, W.P. Silva, A.J. Queiroz, R.M. Figueirêdo, J.P. Gomes, B.A. Melo, A.G. Lima, Description of cumbeba (Tacinga inamoena) waste drying at different temperatures using diffusion models. Foods 9(12), 1818 (2020). https://doi.org/10.3390/foods9121818

    Article  Google Scholar 

  49. J.P.D.L. Ferreira, A.J.D.M. Queiroz, R.M.F.D. Figueirêdo, W.P. Silva, J.P. Gomes, D.D.C. Santos, R.O.D. Andrade, Utilization of cumbeba (Tacinga inamoena) residue: drying kinetics and effect of process conditions on antioxidant bioactive compounds. Foods 10(4), 788 (2021). https://doi.org/10.3390/foods10040788

    Article  CAS  Google Scholar 

  50. W.P. Silva, V.S.F. Oliveira, G.N. Araújo, A.G.B. Lima, Modeling of water transport in roof tiles by removal of moisture at isothermal conditions. Heat Mass Transf. 48(5), 809–821 (2012). https://doi.org/10.1007/s00231-011-0931-4

    Article  Google Scholar 

  51. R.L.J. Almeida, N.C. Santos, C.E. Padilha, S.S. Monteiro, E.S. Santos, Impact of hydrothermal pretreatments on physicochemical characteristics and drying kinetics of starch from red rice (Oryza sativa L.). J. Food Proc. Preserv. 45, e.15448 (2021). https://doi.org/10.1111/jfpp.15448

    Article  CAS  Google Scholar 

  52. M.J. Torres-Ossandón, L. Castillo, K.S. Ah-Hen, A. Vega-Gálvez, Effect of high hydrostatic pressure processing on phytochemicals, antioxidant activity, and behavior of Botrytis cinerea in white grape juice concentrate. J. Food Process. Preserv. 44(11), e14864 (2020). https://doi.org/10.1111/jfpp.14864

    Article  CAS  Google Scholar 

  53. Y. Ma, J. Yi, J. Bi, Y. Zhao, X. Li, X. Wu, Q. Du, Effect of ultrasound on mass transfer kinetics and phenolic compounds of apple cubes during osmotic dehydration. LWT-Food Sci. Technol. 151, 112186 (2021). https://doi.org/10.1016/j.lwt.2021.112186

    Article  CAS  Google Scholar 

  54. R.D. Khandare, P.D. Tomke, V.K. Rathod, Kinetic modeling and process intensification of ultrasound-assisted extraction of d-limonene using citrus industry waste. Chem. Eng. Proc.-Proc. Int. 159, 108181 (2021). https://doi.org/10.1016/j.cep.2020.108181

    Article  CAS  Google Scholar 

  55. N. Kutlu, A. Isci, O. Sakiyan, A.E. Yilmaz, Effect of ohmic heating on ultrasound extraction of phenolic compounds from cornelian cherry (Cornus mas). J. Food Process. Preserv. 45(10), e15818 (2021). https://doi.org/10.1111/jfpp.15818

    Article  CAS  Google Scholar 

  56. M. Babotă, O. Frumuzachi, A. Gâvan, C. Iacoviță, J. Pinela, L. Barros, A. Mocan, Optimized ultrasound-assisted extraction of phenolic compounds from Thymus comosus Heuff. ex Griseb. et Schenk (wild thyme) and their bioactive potential. Ultrason. Sonochem. 84, 105954 (2022). https://doi.org/10.1016/j.ultsonch.2022.105954

    Article  CAS  Google Scholar 

  57. A.A. Casazza, B. Aliakbarian, E. Sannita, P. Perego, High-pressure high-temperature extraction of phenolic compounds from grape skins. Int. J. Food Sci. Technol. 47(2), 399–405 (2011). https://doi.org/10.1111/j.1365-2621.2011.02853.x

    Article  CAS  Google Scholar 

  58. L. Eroman Unni, O.P. Chauhan, P.S. Raju, High pressure processing of garlic paste: effect on the quality attributes. Int. J. Food Sci. Technol. 49(6), 1579–1585 (2013). https://doi.org/10.1111/ijfs.12456

    Article  CAS  Google Scholar 

  59. I. Park, J.U. Kim, H.M. Shahbaz, D. Jung, M. Jo, K.S. Lee, J. Park, High hydrostatic pressure treatment for manufacturing of garlic powder with improved microbial safety and antioxidant activity. Int. J. Food Sci. Technol. 54(2), 325–334 (2018). https://doi.org/10.1111/ijfs.13937

    Article  CAS  Google Scholar 

  60. F.J. Barba, N.S. Terefe, R. Buckow, D. Knorr, V. Orlien, New opportunities and perspectives of high pressure treatment to improve health and safety attributes of foods a review. Food Res. Int. 77, 725–742 (2015). https://doi.org/10.1016/j.foodres.2015.05.015

    Article  Google Scholar 

  61. G. Zhao, R. Zhang, M. Zhang, Effects of high hydrostatic pressure processing and subsequent storage on phenolic contents and antioxidant activity in fruit and vegetable products. Int. J. Food Sci. Technol. 52(1), 3–12 (2016). https://doi.org/10.1111/ijfs.13203

    Article  CAS  Google Scholar 

  62. S. Dede, H. Alpas, A. Bayındırlı, High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J. Sci. Food Agric. 87(5), 773–782 (2007). https://doi.org/10.1002/jsfa.2758

    Article  CAS  Google Scholar 

  63. S. Zhang, Y. Zhao, X. Yao, Z. Zheng, C. Zheng, Z. Jiang, Effect of high hydrostatic pressure pretreatment on flavour and physicochemical properties of freeze-dried carambola slices. Int. J. Food Sci. Technol. 57(7), 1–10 (2022). https://doi.org/10.1111/ijfs.15748

    Article  CAS  Google Scholar 

  64. G.A. Collazos-Escobar, N. Gutiérrez-Guzmán, H.A. Váquiro-Herrera, J. Bon, J.V. Garcia-Perez, Thermodynamic analysis and modeling of water vapor adsorption isotherms of roasted specialty coffee (Coffee arabica L. cv. Colombia). LWT-Food Sci. Technol. 160, 113335 (2022). https://doi.org/10.1016/j.lwt.2022.113335

    Article  CAS  Google Scholar 

  65. P.P. Lewicki, The applicability of the GAB model to food water sorption isotherms. Int. J. Food Sci. Technol. 32(6), 553–557 (2008). https://doi.org/10.1111/j.1365-2621.1997.tb02131.x

    Article  Google Scholar 

  66. R.F. Zabalaga, S.C. Carballo, Convective drying and water adsorption behavior of unripe banana: mathematical modeling. J. Food Process. Preserv. 39(6), 1334–1341 (2015). https://doi.org/10.1111/jfpp.12352

    Article  CAS  Google Scholar 

  67. H. Al-Muhtaseb, M.A. Hararah, E.K. Megahey, W.A.M. McMinn, T.R.A. Magee, Moisture adsorption isotherms of microwave-baked Madeira cake. LWT-Food Sci. Technol. 43(7), 1042–1049 (2010). https://doi.org/10.1016/j.lwt.2010.01.003

    Article  CAS  Google Scholar 

  68. S. Brunauer, L.S. Deming, W.E. Deming, E. Teller, On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62(7), 1723–1732 (1940). https://doi.org/10.1021/ja01864a025

    Article  CAS  Google Scholar 

  69. J.S. Zeymer, P.C. Corrêa, G.H. de Oliveira, F.M. Baptestini, R.C. Freitas, Desorption isotherms of Lactuca sativa seeds. Rev. Bras. de Eng Agríc e Ambient. 21, 568–572 (2017). https://doi.org/10.1590/1807-1929/agriambi.v21n8p568-572

    Article  Google Scholar 

  70. K. Gościnna, J. Pobereżny, E. Wszelaczyńska, W. Szulc, B. Rutkowska, Effects of drying and extraction methods on bioactive properties of plums. Food Control 122, 107771 (2021). https://doi.org/10.1016/j.foodcont.2020.107771

    Article  CAS  Google Scholar 

Download references

Acknowledgements

NCS and RLJA were supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES). The authors are grateful to the Federal University of Rio Grande do Norte (UFRN), Federal University of Ceará (UFC), Federal University of Campina Grande (UFCG) and Federal Institute of Sertão Pernambucano (IFSertãoPE) for technical support.

Funding

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Newton Carlos Santos.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Ethical approval

Ethics approval was not required for this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, N.C., Almeida, R.L.J., da Silva, G.M. et al. Impact of high hydrostatic pressure (HHP) pre-treatment drying cashew (Anacardium occidentale L.): drying behavior and kinetic of ultrasound-assisted extraction of total phenolics compounds. Food Measure 17, 1033–1045 (2023). https://doi.org/10.1007/s11694-022-01688-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01688-5

Keywords

Navigation