Skip to main content

Advertisement

Log in

Novel Drying Techniques for the Food Industry

  • Review Paper
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The drying of foods is hugely important technique for the food industry and offers possibilities for ingredient development and novel products to consumers. In recent years, there have been many advances in technology associated with the industrial drying of food including pre-treatments, techniques, equipment and quality. Recent research has revealed that novel drying approaches such as microwave- or ultrasound-assisted drying, high electric field drying, heat pump drying and refractance window drying can be now taken to improve the efficiency and efficacy of drying so that energy consumption can be reduced whilst at the same time preserving the quality of the end product. However, whilst research has showed these technologies to be successful, commercial practitioners do not often know what techniques have the greatest potential in industry. The current work highlights recent developments of valuable novel drying techniques to promote sustainability in the food industry and points towards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Abbasi S, Azari S (2009) Novel microwave–freeze drying of onion slices. Int J Food Sci Technol 44(5):974–979

  2. Abonyi BI, Feng H, Tang J, Edwards CG, Chew BP, Bolland K (2000) Evaluation of quality retention of strawberry and carrot dried by a novel drying method. Institute of Food Technologist, Dallas, TX

    Google Scholar 

  3. Abonyi BI, Feng H, Tang J, Edwards CG, Chew BP, Mattinson DS, Fellman JK (2002) Quality retention in strawberry and carrot purees dried with Refractance Window system. J Food Sci 67(3):1051–1056

    Article  CAS  Google Scholar 

  4. Ahmedou SAO, Havet M (2009) Analysis of the EHD enhancement of heat transfer in a flat duct. IEEE Trans Dielectr Electr Insul 16(2):489–494

    Article  CAS  Google Scholar 

  5. Akbarnezhad A, Ong KCG, Zhang MH, Tam CT, Foo TWJ (2011) Microwave-assisted beneficiation of recycled concrete aggregates. Constr Build Mater 25(8):3469–3479

  6. Alemrajabi AA, Rezaee F, Mirhosseini M, Esehaghbeygi A (2012) Comparative evaluation of the effects of electrohydrodynamic, oven, and ambient air on carrot cylindrical slices during drying process. Dry Technol 30(1):88–96

    Article  CAS  Google Scholar 

  7. Askari GR, Emam-Djomeh Z, Mousavi SM (2013) Heat and mass transfer in apple cubes in a microwave-assisted fluidized bed drier. Food and Bioprod Process 91(3):207–215

  8. Bai YX, Sun B (2011) Study of electrohydrodynamic (EHD) drying technique for shrimps. J Food Process Preserv 35(6):891–897

    Article  Google Scholar 

  9. Bai Y, Sun B, Yang G (2011b). Drying characteristics of Spanish mackerel during electrohydrodynamic (EHD) drying. In Power and Energy Engineering Conference (APPEEC), 2011 Asia-Pacific. IEEE, pp 1–4

  10. Bai Y, Yang Y, Huang Q (2012) Combined electrohydrodynamic (EHD) and vacuum freeze drying of sea cucumber. Dry Technol 30(10):1051–1055

    Article  CAS  Google Scholar 

  11. Bai YX, Yang GJ, Hu YC, Qu M (2012) Physical and sensory properties of electrohydrodynamic (EHD) dried scallop muscle. J Aquat Food Prod Technol 21(3):238–247

    Article  Google Scholar 

  12. Bai-Ngew S, Therdthai N, Dhamvithee P (2011) Characterization of microwave vacuum-dried durian chips. J Food Eng 104(1):114–122

  13. Bajgai TR, Hashinaga F (2001) Drying of spinach with a high electric field. Dry Technol 19(9):2331–2341

    Article  Google Scholar 

  14. Bajgai TR, Hashinaga F (2001) High electric field drying of Japanese radish. Dry Technol 19(9):2291–2302

    Article  Google Scholar 

  15. Barbieri S, Elustondo M, Urbicain M (2004) Retention of aroma compounds in basil dried with low pressure superheated steam. J Food Eng 65(1):109–115

    Article  Google Scholar 

  16. Benedito J, Carcel JA, Gonzalez R, Mulet A (2002) Application of low intensity ultrasonics to cheese manufacturing processes. Ultrasonics 40(1):19–23

    Article  CAS  Google Scholar 

  17. Bórquez R (2003) Stability of n-3 fatty acids in fish particles during processing by impingement jet. J Food Eng 56(2):245–247

    Article  Google Scholar 

  18. Bosse D, Valentin P (1988) The thermal dehydration of pulp in a large scale steam dryer. In: Proceedings of the sixth international drying symposium, Versailles, France, pp 337–343

  19. Boudhrioua N, Bahloul N, Slimen BI, Kechaou N (2009) Comparison on the total phenol contents and the color of fresh and infrared dried olive leaves. Ind Crops Prod 29(2):412–419

    Article  CAS  Google Scholar 

  20. Braeckman L, Ronsse F, Hidalgo PC, Pieters J (2009) Influence of combined IR-grilling and hot air cooking conditions on moisture and fat content, texture and colour attributes of meat patties. J Food Eng 93(4):437–443

    Article  Google Scholar 

  21. Brown ZK, Fryer PJ, Norton IT, Bakalis S, Bridson RH (2008) Drying of foods using supercritical carbon dioxide—Investigations with carrot. Innov Food Sci Emerg Technol 9(3):280–289

  22. Cao W, Nishiyama Y, Koide S (2004) Electrohydrodynamic drying characteristics of wheat using high voltage electrostatic field. J Food Eng 62(3):209–213

    Article  Google Scholar 

  23. Cárcel JA, Garcia-Perez JV, Riera E, Mulet A (2011) Improvement of convective drying of carrot by applying power ultrasound—Influence of mass load density. Dry Technol 29(2):174–182

    Article  Google Scholar 

  24. Cardello AV (2003) Consumer concerns and expectations about novel food processing technologies: effects on product liking. Appetite 40(3):217–233

    Article  Google Scholar 

  25. Cenkowski S, Sosa-Morales ME, Flores-Alvarez MDC (2012) Protein content and antioxidant activity of distillers’ spent grain dried at 150°C with superheated steam and hot air. Dry Technol 30(11–12):1292–1296

    Article  CAS  Google Scholar 

  26. Chen HH, Huang TC, Tsai CH, Mujumdar AS (2008) Development and performance analysis of a new solar energy-assisted photocatalytic dryer. Dry Technol 26(4):503–507

    Article  CAS  Google Scholar 

  27. Chi JW, Wei ZC, Xu ZH, Zhang Y (2003) Application and development of microwave techniques in food processing. Storage Process 1:003

    Google Scholar 

  28. Chua KJ, Chou SK (2005) A comparative study between intermittent microwave and infrared drying of bioproducts. Int J Food Sci Technol 40(1):23–39

    Article  CAS  Google Scholar 

  29. Clarke PT (2004, August). Refractance window—“down under”. In Drying 2004—Proceedings of the 14th international drying symposium (IDS), pp 813–820

  30. Colak N, Kuzgunkaya E, Hepbasli A (2008) Exergetic assessment of drying of mint leaves in a heat pump dryer. J Food Proc Eng 31(3):281–298

  31. Das I, Das SK, Bal S (2009) Drying kinetics of high moisture paddy undergoing vibration-assisted infrared (IR) drying. J Food Eng 95(1):166–171

    Article  Google Scholar 

  32. De la Fuente-Blanco S, Riera-Franco de Sarabia E, Acosta-Aparicio VM, Blanco-Blanco A, Gallego-Juárez JA (2006) Food drying process by power ultrasound. Ultrasonics 44:523–527

    Article  Google Scholar 

  33. Dev SR, Raghavan VG (2012) Advancements in drying techniques for food, fiber, and fuel. Dry Technol 30(11–12):1147–1159

    Article  Google Scholar 

  34. Devahastin S, Mujumdar AS (2014) Superheated steam drying of foods and biomaterials. Modern Dry Technol Process Intensif 5:57–84

    Google Scholar 

  35. Duan ZH, Jiang LN, Wang JL, Yu XY, Wang T (2011) Drying and quality characteristics of tilapia fish fillets dried with hot air-microwave heating. Food Bioprod Process 89(4):472–476

    Article  Google Scholar 

  36. Dujmić F, Brnčić M, Karlović S, Bosiljkov T, Ježek D, Tripalo B, Mofardin I (2013) Ultrasound-assisted infrared drying of pear slices: textural issues. J Food Process Eng 36(3):397–406

    Article  Google Scholar 

  37. Eikevik TM, Alves-Filho O, Bantle M (2012) Microwave-assisted atmospheric freeze drying of green peas: a case study. Drying Technol 30(14):1592–1599

  38. Erbay Z, Icier F (2009) Optimization of drying of olive leaves in a pilot-scale heat pump dryer. Drying Technol 27(3):416–427

  39. Fadhel MI, Sopian K, Daud WRW, Alghoul MA (2011) Review on advanced of solar assisted chemical heat pump dryer for agriculture produce. Renew Sustain Energy Rev 15(2):1152–1168

    Article  CAS  Google Scholar 

  40. Fatouh M, Metwally MN, Helali AB, Shedid MH (2006) Herbs drying using a heat pump dryer. Energ Convrs Manage 47(15):2629–2643

  41. Feng YF, Zhang M, Jiang H, Sun JC (2012) Microwave-assisted spouted bed drying of lettuce cubes. Drying Technol 30(13):1482–1490

  42. Fernandes FA, Rodrigues S (2007) Ultrasound as pre-treatment for drying of fruits: dehydration of banana. J Food Eng 82(2):261–267

    Article  Google Scholar 

  43. Fernandes FA, Rodrigues S (2008) Application of ultrasound and ultrasound-assisted osmotic dehydration in drying of fruits. Dry Technol 26(12):1509–1516

    Article  CAS  Google Scholar 

  44. Gabel MM, Pan Z, Amaratunga KSP, Harris LJ, Thompson JF (2006) Catalytic infrared dehydration of onions. J Food Sci 71(9):351–357

    Article  Google Scholar 

  45. Garcia-Noguera J, Oliveira FI, Gallão MI, Weller CL, Rodrigues S, Fernandes FA (2010) Ultrasound-assisted osmotic dehydration of strawberries: effect of pretreatment time and ultrasonic frequency. Dry Technol 28(2):294–303

    Article  Google Scholar 

  46. García-Pérez JV, Rosselló C, Cárcel JA, De la Fuente S, Mulet A (2007) Effect of air temperature on convective drying assisted by high power ultrasound. Defect Diffus Forum 258:563–574

    Google Scholar 

  47. Ghafoor M, Misra NN, Mahadevan K, Tiwari BK (2014) Ultrasound assisted hydration of navy beans (Phaseolus vulgaris). Ultrason Sonochem 21(1):409–414

    Article  CAS  Google Scholar 

  48. Goh LJ, Othman MY, Mat S, Ruslan H, Sopian K (2011) Review of heat pump systems for drying application. Renew Sustain Energy Rev 15(9):4788–4796

    Article  CAS  Google Scholar 

  49. Goodenough TI, Goodenough PW, Goodenough SM (2007) The efficiency of corona wind drying and its application to the food industry. J Food Eng 80(4):1233–1238

    Article  Google Scholar 

  50. Hasibuan R, Wan Daud WR (2009) Quality changes of superheated steam–dried fibers from oil palm empty fruit bunches. Dry Technol 27(2):194–200

    Article  CAS  Google Scholar 

  51. Hawlader MNA, Jahangeer KA (2012) Heat pump design for food processing. In: Ahmed J, Rahman MS (eds) Handbook of food process design, Wiley-Blackwell, Oxford, pp 578–620

  52. Hawlader MNA, Perera CO, Tian M (2006) Comparison of the retention of 6-gingerol in drying of ginger under modified atmosphere heat pump drying and other drying methods. Drying Technol 24(1):51–56

  53. Ibrahim M, Sopian K, Daud WRW, Alghoul MA, Yahya M, Sulaiman MY, Zaharim A (2009) Solar chemical heat pump drying system for tropical region. WSEAS Trans Environ Devel 5(5):404–413

  54. Icier F, Colak N, Erbay Z, Kuzgunkaya EH, Hepbasli A (2010) A comparative study on exergetic performance assessment for drying of Broccoli Florets in three different drying systems. Dry Technol 28:193–204

    Article  Google Scholar 

  55. Jumah RY, Mujumdar AS, Raghavan GSV (1996) Batch drying kinetics of corn in a novel rotating jet spouted bed. Can J Chem Eng 74(4):479–486

  56. Kahyaoglu LN, Sahin S, Sumnu G (2012) Spouted bed and microwave-assisted spouted bed drying of parboiled wheat. Food Bioprod Process 90(2):301–308

  57. Kozanoglu B, Flores A, Guerrero-Beltrán JA, Welti-Chanes J (2012) Drying of pepper seed particles in a superheated steam fluidized bed operating at reduced pressure. Dry Technol 30(8):884–890

    Article  CAS  Google Scholar 

  58. Krishnamurthy K, Khurana HK, Soojin J, Irudayaraj J, Demirci A (2008) Infrared heating in food processing: an overview. Compr Rev Food Sci Food Saf 7(1):2–13

    Article  Google Scholar 

  59. Kudra T, Mujumdar AS (2009) Advanced drying technologies, 2nd edn. Taylor & Francis, Inc., Bosa Roca

    Book  Google Scholar 

  60. Léonard A, Blacher S, Nimmol C, Devahastin S (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85(1):154–162

    Article  Google Scholar 

  61. Lin YL, Li SJ, Zhu Y, Bingol G, Pan Z, McHugh TH (2009) Heat and mass transfer modeling of apple slices under simultaneous infrared dry blanching and dehydration process. Dry Technol 27(10):1051–1059

    Article  CAS  Google Scholar 

  62. Lin YP, Tsen JH, King V (2005) Effects of far-infrared radiation on the freeze-drying of sweet potato. J Food Eng 68(2):249–255

    Article  Google Scholar 

  63. Maache-Rezzoug Z, Rezzoug SA, Allaf K (2002) Development of a new drying process–dehydration by cyclical pressure drops (DDS): application to the collagen gel. Drying Technol 20(1):109–129

  64. Momenzadeh L, Zomorodian A, Mowla D (2011) Experimental and theoretical investigation of shelled corn drying in a microwave-assisted fluidized bed dryer using Artificial Neural Network. Food Bioprod Process 89(1):15–21

    Article  Google Scholar 

  65. Moreira RG (2001) Impingement drying of foods using hot air and superheated steam. J Food Eng 49(4):291–295

  66. Mortezapour H, Ghobadian B, Minaei S, Khoshtaghaza MH (2012) Saffron drying with a heat pump–assisted hybrid photovoltaic–thermal solar dryer. Drying Technol 30(6):560–566

  67. Moses JA, Karthickumar P, Sinija VR, Alagusundaram K, Tiwari BK (2013) Effect of microwave treatment on drying characteristics and quality parameters of thin layer drying of coconut. Asian J Food Agro Ind 6(02):72–85

    Google Scholar 

  68. Mujumdar AS, Huang LX (2007) Global R&D needs in drying. Dry Technol 25(4):647–658

    Article  Google Scholar 

  69. Nahimana H, Zhang M (2011) Shrinkage and color change during microwave vacuum drying of carrot. Drying Technol 29(7):836–847

  70. Nathakaranakule A, Jaiboon P, Soponronnarit S (2010) Far-infrared radiation assisted drying of longan fruit. J Food Eng 100(4):662–668

    Article  CAS  Google Scholar 

  71. Nayak B, Berrios JDJ, Powers JR, Tang J, Ji Y (2011) Coloured potatoes (Solanum tuberosum L.) dried for antioxidant-rich value-added foods. J Food Process Preserv 35(5):571–580

    Article  CAS  Google Scholar 

  72. Nimmol C, Devahastin S, Swasdisevi T, Soponronnarit S (2007) Drying of banana slices using combined low-pressure superheated steam and far-infrared radiation. J Food Eng 81(3):624–633

    Article  Google Scholar 

  73. Nindo CI, Tang J (2007) Refractance window dehydration technology: a novel contact drying method. Dry Technol 25(1):37–48

    Article  CAS  Google Scholar 

  74. Nindo CI, Feng H, Shen GQ, Tang J, Kang DH (2003) Energy utilization and microbial reduction in a new film drying system. J Food Process Preserv 27(2):117–136

    Article  Google Scholar 

  75. Ochoa-Martínez CI, Quintero PT, Ayala AA, Ortiz MJ (2012) Drying characteristics of mango slices using the Refractance Window™ technique. J Food Eng 109(1):69–75

    Article  Google Scholar 

  76. Ong SP, Law CL (2011) Microstructure and optical properties of salak fruit under different drying and pretreatment conditions. Drying Technol 29(16):1954–1962

  77. Orsat V, Changrue V, Raghavan GS (2006) Microwave drying of fruits and vegetables. Stewart Postharvest Rev 2(6):1–7

    Article  Google Scholar 

  78. Ortuño C, Pérez-Munuera I, Puig A, Riera E, Garcia-Perez JV (2010) Influence of power ultrasound application on mass transport and microstructure of orange peel during hot air drying. Phys Procedia 3(1):153–159

    Article  Google Scholar 

  79. Ozkan IA, Akbudak B, Akbudak N (2007) Microwave drying characteristics of spinach. J Food Eng 78(2):577–583

    Article  Google Scholar 

  80. Ozkoc SO, Sumnu G, Sahin S, Turabi E (2009) Investigation of physicochemical properties of breads baked in microwave and infrared-microwave combination ovens during storage. Eur Food Res Technol 228(6):883–893

    Article  CAS  Google Scholar 

  81. Pavan MA, Schmidt SJ, Feng H (2012) Water sorption behavior and thermal analysis of freeze-dried, Refractance Window-dried and hot-air dried açaí (Euterpe oleracea Martius) juice. LWT Food Sci Technol 48(1):75–81

    Article  CAS  Google Scholar 

  82. Pronyk C, Cenkowski S, Muir WE (2010) Drying kinetics of instant Asian noodles processed in superheated steam. Dry Technol 28(2):304–314

    Article  Google Scholar 

  83. Pronyk C, Cenkowski S, Muir WE, Lukow OM (2008) Effects of superheated steam processing on the textural and physical properties of Asian noodles. Dry Technol 26(2):192–203

    Article  CAS  Google Scholar 

  84. Raghavan GSV, Rennie TJ, Sunjka PS, Orsat V, Phaphuangwittayakul W, Terdtoon P (2005) Overview of new techniques for drying biological materials with emphasis on energy aspects. Braz J Chem Eng 22(2):195–201

    Article  CAS  Google Scholar 

  85. Rahman SMA, Mujumdar AS (2008) A novel atmospheric freeze-drying system using a vibro-fluidized bed with adsorbent. Dry Technol 26(4):393–403

    Article  Google Scholar 

  86. Ramachandran MR, Lai FC (2010) Effects of porosity on the performance of EHD-enhanced drying. Dry Technol 28(12):1477–1483

    Article  Google Scholar 

  87. Rastogi NK (2012) Recent trends and developments in infrared heating in food processing. Crit Rev Food Sci Nutr 52(9):737–760

    Article  CAS  Google Scholar 

  88. Rawson A, Tiwari BK, Tuohy MG, O’Donnell CP, Brunton N (2011) Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrason Sonochem 18(5):1172–1179

    Article  CAS  Google Scholar 

  89. Reyes A, Cerón S, Zuniga R, Moyano P (2007) A comparative study of microwave-assisted air drying of potato slices. Biosyst Eng 98(3):310–318

    Article  Google Scholar 

  90. Rosenthal I (1992) Electromagnetic radiations in food science. Springer, USA, pp 1–19

    Google Scholar 

  91. Sa-Adchom P, Swasdisevi T, Nathakaranakule A, Soponronnarit S (2011) Drying kinetics using superheated steam and quality attributes of dried pork slices for different thickness, seasoning and fibers distribution. J Food Eng 104(1):105–113

    Article  Google Scholar 

  92. Sabarez HT, Gallego-Juarez JA, Riera E (2012) Ultrasonic-assisted convective drying of apple slices. Dry Technol 30(9):989–997

    Article  Google Scholar 

  93. Schössler K, Jäger H, Knorr D (2012) Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innov Food Sci Emerg Technol 16:113–120

    Article  Google Scholar 

  94. Seyhan GF, Evranuz Ö (2000) Low temperature mushroom (A. bisporus) drying with desiccant dehumidifiers. Dry Technol 18(1–2):433–445

    Article  Google Scholar 

  95. Seyhun N, Ramaswamy H, Sumnu G, Sahin S, Ahmed J (2009) Comparison and modeling of microwave tempering and infrared assisted microwave tempering of frozen potato puree. J Food Eng 92(3):339–344

    Article  Google Scholar 

  96. Shi J, Pan Z, McHugh TH, Wood D, Hirschberg E, Olson D (2008) Drying and quality characteristics of fresh and sugar-infused blueberries dried with infrared radiation heating. LWT Food Sci Technol 41(10):1962–1972

    Article  CAS  Google Scholar 

  97. Shi Q, Xue CH, Zhao Y, Li ZJ, Wang XY (2008) Drying characteristics of horse mackerel (Trachurus japonicas) dried in a heat pump dehumidifier. J Food Eng 84(1):12–20

    Article  Google Scholar 

  98. Shih C, Pan Z, McHugh T, Wood D, Hirschberg E (2008) Sequential infrared radiation and freeze-drying method for producing crispy strawberries. Trans ASAE 51(1):205

    Article  Google Scholar 

  99. Silva FA, Marsaioli A Jr, Maximo GJ, Silva MAAP, Goncalves LAG (2006) Microwave assisted drying of macadamia nuts. J Food Eng 77(3):550–558

    Article  Google Scholar 

  100. Simpson RR, Jiménez MP, Carevic EG, Grancelli RM (2007) Acceleration of osmotic dehydration process through ohmic heating of foods: raspberries (Rubus idaeus). Arch Latinoam Nutr 57(2):192

    Google Scholar 

  101. Skjoldebrand C (2001) In: Richardson P (ed) Thermal technologies in food processing, Woodhead publishing limited, Cambridge, England, pp 208–240

  102. Speckhahn A, Srzednicki G, Desai DK (2010) Drying of beef in superheated steam. Dry Technol 28(9):1072–1082

    Article  CAS  Google Scholar 

  103. Sumnu G, Turabi E, Oztop M (2005) Drying of carrots in microwave and halogen lamp–microwave combination ovens. LWT Food Sci Technol 38(5):549–553

    Article  CAS  Google Scholar 

  104. Sun Y, Zheng X, Xu X, Liu C, Li Q, Zhang Q (2012) Drying properties and parameters of blue honeysuckles pulp under foam assisted microwave drying conditions. Int J Food Eng 8(2):1556–3758

  105. Tan M, Chua KJ, Mujumdar AS, Chou SK (2001) Effect of osmotic pre-treatment and infrared radiation on drying rate and color changes during drying of potato and pineapple. Dry Technol 19(9):2193–2207

    Article  CAS  Google Scholar 

  106. Tang J, Yang T (2004) Dehydrated vegetables: principles and systems. In: Hui AH, Ghazala S, Graham DM, Murrell KD, Nip WK (eds) Handbook of vegetable preservation and processing. Marcel Dekker, New York, pp 335–372

    Google Scholar 

  107. Tang Z, Cenkowski S (2000) Dehydration dynamics of potatoes in superheated steam and hot air. Can Agric Eng 42(1):43–49

    Google Scholar 

  108. Tiwari BK, Mason TJ (2012). Ultrasound processing of liquid foods. In: Cullen PJ, Tiwari BK, Valdramidis V (eds) Novel thermal and non-thermal technologies for fluid foods. ISBN: 978-0-12-381470-8, pp 135–165

  109. Toğrul H (2006) Suitable drying model for infrared drying of carrot. J Food Eng 77(3):610–619

    Article  Google Scholar 

  110. Uysal N, Sumnu G, Sahin S (2009) Optimization of microwave–infrared roasting of hazelnut. J Food Eng 90(2):255–261

    Article  Google Scholar 

  111. Vega-Mercado H, Marcela Gongora-Nieto M, Barbosa-Cánovas GV (2001) Advances in dehydration of foods. J Food Eng 49(4):271–289

    Article  Google Scholar 

  112. Wang S, Hu Z, Han Y, Gu Z (2013) Effects of magnetron arrangement and power combination of microwave on drying uniformity of carrot. Dry Technol 31(11):1206–1211

    Article  CAS  Google Scholar 

  113. Wang Y, Zhang L, Johnson J, Gao M, Tang J, Powers JR, Wang S (2014) Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food Bioprocess Technol 7(1):278–288

    Article  CAS  Google Scholar 

  114. Yousefi A, Niakousari M, Moradi M (2013) Microwave assisted hot air drying of papaya (Carica papaya L.) pretreated in osmotic solution. Afr J Agric 8(25):3229–3235

  115. Zare D, Ranjbaran M (2012) Simulation and validation of microwave-assisted fluidized bed drying of soybeans. Drying Technol 30(3):236–247

  116. Zarein M, Samadi SH, Ghobadian B (2013) Investigation of microwave dryer effect on energy efficiency during drying of apple slices. J Saudi Soc Agric Sci. doi:10.1016/j.jssas.2013.06.002

  117. Zhang M, Tang J, Mujumdar AS, Wang S (2006) Trends in microwave-related drying of fruits and vegetables. Trends Food Sci Technol 17(10):524–534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. K. Tiwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moses, J.A., Norton, T., Alagusundaram, K. et al. Novel Drying Techniques for the Food Industry. Food Eng Rev 6, 43–55 (2014). https://doi.org/10.1007/s12393-014-9078-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9078-7

Keywords

Navigation