Skip to main content
Log in

Comparing vibrational spectroscopic method with wet chemistry to determine nutritional and chemical changes in solid state fermented oats grain (Avena sativa L.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to monitor nutritional and chemical changes of oats grain by wet chemistry and Fourier transformed infrared spectroscopy (FTIR). Oats grain fermented with or without inoculants of Aspergillus oryzae (AO), AO + Bacillus subtilis (C + D), Saccharomyces cerevisiae (SC), and Lactobacillus salivarius (LBS) was first analysed by wet chemistry for chemical and nutritional compositions. Then, analysed values were predicted by FTIR spectroscopy based on partial least square regression (PLSR). Crude protein increased with LBS and AO fermentations. AO and SC fermentation reduced dietary fibre, tannin and phytic acid contents. Highest fibre degradation was obtained from LBS fermentation, and highest organic acid production from AO and C + D fermentations. In the determination of chemical and nutrient contents, the method performance characteristics of FTIR-PLSR was better than that of wet chemistry methods, with precision values of 0.15–9.5% and accuracy values of around 100% (R2 of 0.954–0.998 and standard error of prediction of 0.024–0.001). Furthermore, FTIR spectra deconvolution showed that oats starch had an overall 5–13% increased amorphous structure and 6–17% reduced proportion of crystalline structure due to the effect of fermentations. Fermentation lead to increased α-helix and side chain of peptides + amino acids, but decreased β-sheet and β-turn. Fermentation caused nutritionally and chemically valuable oats grain and FTIR-PLSR method produced a fast, non-destructive and robust determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A. Kristek, M.Y. Schar, G. Soycan, S. Alsharif, G.G.C. Kuhnle, G. Walton, J.P.E. Spencer, Nutr. Bull. 43, 358–373 (2018). https://doi.org/10.1111/nbu.12354

    Article  Google Scholar 

  2. M.E. Camire, Overview of grain components and changes occurring in Grain Constituents with Different Forms of Processing, in Cereal Grain-based Functional Foods: Carbohydrate and Phytochemical Components. ed. by T. Beta, M.E. Camire (Thomas Graham House, Cambridge, 2019), p.12

    Google Scholar 

  3. S. Salazar-Villanea, W.H. Hendriks, E.M. Bruininx, H. Gruppen, A.F. van der Poel, Nutr. Res. Rev. 29, 126–141 (2016). https://doi.org/10.1017/S0954422416000056

    Article  CAS  Google Scholar 

  4. S. Yasar, M.S. Gok, Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Anim. Sci. Biotechnol. 71, 51–62 (2014)

    CAS  Google Scholar 

  5. S. Yasar, M.S. Gok, Y. Gurbuz, Turk. J. Vet. Anim. Sci. 40, 313–322 (2016). https://doi.org/10.3906/vet-1505-44

    Article  CAS  Google Scholar 

  6. S. Yasar, I. Okutan, R. Tosun, J. Inst. Sci. Tech. 7, 297–308 (2017)

    Article  Google Scholar 

  7. S.B. Cai, F.Y. Gao, X.D. Zhang, O. Wang, W. Wu, S.J. Zhu, D. Zhang, F. Zhou, B.P. Ji, J. Food. Sci. Technol. 51, 2544–2551 (2014). https://doi.org/10.1007/s13197-012-0748-2

    Article  CAS  Google Scholar 

  8. S.B. Cai, O. Wang, W. Wu, S.J. Zhu, F. Zhou, B.P. Ji, F.Y. Gao, D. Zhang, J. Liu, Q. Cheng, J. Agric. Food Chem. 60, 507–513 (2012). https://doi.org/10.1021/jf204163a

    Article  CAS  Google Scholar 

  9. Y. Xiao, X. Rui, G.L. Xing, H. Wu, W. Li, X.H. Chen, M. Jiang, M.S. Dong, J. Funct. Foods 16, 58–73 (2015). https://doi.org/10.1016/j.jff.2015.04.032

    Article  CAS  Google Scholar 

  10. H. Zhang, J. Ma, Y. Miao, T. Tuchiya, J.Y. Chen, J. Oleo. Sci. 64, 375–380 (2015). https://doi.org/10.5650/jos.ess14201

    Article  CAS  Google Scholar 

  11. M. Rahman, K. Theodoridou, P. Yu, J. Anim. Sci. Biotechnol. 7, 1–6 (2016). https://doi.org/10.1186/s40104-016-0111-y

    Article  CAS  Google Scholar 

  12. S. Yasar, R. Tosun, Arch. Anim. Nutr. 72, 407–423 (2018). https://doi.org/10.1080/1745039X.2018.1500242

    Article  CAS  Google Scholar 

  13. S. Yasar, M.H. Alma, R. Tosun, T. Salan, J. Anim. Feed Sci. 28, 282–290 (2019)

    Google Scholar 

  14. S. Yasar, R. Tosun, Z. Sonmez, Measurements 161, 107895 (2020). https://doi.org/10.1016/j.measurement.2020

    Article  Google Scholar 

  15. TSE, Hayvan yem maddeleri–Lactobacillus spp. Izolasyonu ve sayımı (15787/2009) (Türk Standartları Enstitüsü, Ankara, 2009)

    Google Scholar 

  16. TSE, Hayvan yemleri -Maya probiyotik susların ayrımı ve sayımı (15788/2009) (Türk Standartları Enstitüsü, Ankara, 2009)

    Google Scholar 

  17. ISO, Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and moulds - Part 1: Colony count technique in products with water activity greater than 0,95 (ISO 21527–1:2008) (International Organization for Standardization, Geneva, 2008)

    Google Scholar 

  18. ISO, Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and moulds - Part 2: Colony count technique in products with water activity less than or equal to 0,95 (21527–2:2008) (International Organization for Standardization, Geneva, 2008)

    Google Scholar 

  19. A. Karabulut, O. Canbolat, Yem Değerlendirme ve Analiz Yöntemleri (Uludağ Universitesi Yayınevi, Bursa, 2005)

    Google Scholar 

  20. AOAC (Association of Official Analytical Chemists), Official Methods of Analysis, 20th ed. (Washington, 2016)

  21. I.I. Chemesova, D.V. Chizhikov, Rastit. Resur. 40, 122–130 (2004)

    CAS  Google Scholar 

  22. A.R. De Boland, G.B. Garner, B.L. o Dell, Identification and properties of phytate in cereal grains and oilseed products. J. Agric. Food Chem. (1975). https://doi.org/10.1021/jf60202a038

    Article  Google Scholar 

  23. R. Tosun, S. Yasar, Fungal fermantasyonu ile elma posasinin besin madde içeriğinin zenginleştirilmesi. J. Agric. Nat. 23, 754–761 (2020)

    Google Scholar 

  24. N. Liaud, C. Giniés, D.D. Navarro, N. Fabre, S. Crapart, I. Herpoel-Gimbert, A. Levasseur, S. Raouche, J.C. Sigoillot, Fungal. Biol. Biotechnol. 1, 1–10 (2014). https://doi.org/10.1186/s40694-014-0001-z

    Article  Google Scholar 

  25. S. Yasar, R. Tosun, Yeast fermentation improved the nutritional qualities of apple pomace, 1st edn. (İksad, Ağrı, 2019), pp.651–661

    Google Scholar 

  26. S. Yasar, R. Tosun, Increasing the nutritional qualities of tomato pomace by yeast fermentation, 1st edn. (İksad, Ağrı, 2019), pp.641–650

    Google Scholar 

  27. S. Yasar, R. Tosun, B. Baran, Value-added novel products obtained from whole cereal flours fermented in an optimised solid state process using Lactobacillus salivarius subsp. salicinius rogosa et al. (DSM 20555), 1nd edn. (İksad, Gaziantep, 2018), pp. 1110–1125

  28. S. Yasar, R. Tosun, J. Agric. Nat. 23, 527–535 (2020)

    Google Scholar 

  29. M. Spaggiari, A. Ricci, L. Calani, L. Bresciani, E. Neviani, C. Dall’Asta, C. Lazzi, G. Galaverna, Solid state lactic acid fermentation: a strategy to improve wheat bran functionality. LWT- Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2019

    Article  Google Scholar 

  30. R.Y. Gan, H.B. Li, A. Gunaratne, Z.Q. Sui, H. Corke, Compr. Rev. Food Sci. Food Saf. 16, 489–531 (2017). https://doi.org/10.1111/1541-4337.12257

    Article  CAS  Google Scholar 

  31. L.L. Prates, P. Yu, J. Cereal Sci. 74, 37–45 (2017). https://doi.org/10.1016/j.jcs.2017.01.006

    Article  CAS  Google Scholar 

  32. L.L. Prates, P. Yu, Appl. Spectrosc. Rev. 52, 850–867 (2017). https://doi.org/10.1080/05704928.2017.1331447

    Article  CAS  Google Scholar 

  33. Q. Peng, N.A. Khan, Z. Wang, P. Yu, Anim. Feed Sci. Technol. 194, 58–70 (2014). https://doi.org/10.1016/j.anifeedsci.2014.05.004

    Article  CAS  Google Scholar 

  34. M. Bai, G. Qin, Z. Sun, G. Long, Asian-australas. J. Anim. Sci. 29, 1159–1165 (2015). https://doi.org/10.5713/ajas.15.0701

    Article  CAS  Google Scholar 

  35. X. Yan, N.A. Khan, F. Zhang, L. Yang, P. Yu, J. Agric. Food Chem. 62, 6546–6555 (2014). https://doi.org/10.1021/jf501024j

    Article  CAS  Google Scholar 

  36. L.P. Bras, S.A. Bernardino, J.A. Lopes, J.C. Menezes, Chemom. Intell. Lab. Syst. 28, 91–99 (2005). https://doi.org/10.1016/j.chemolab.2004.05.007

    Article  CAS  Google Scholar 

  37. D.S. Ferreira, O.F. Galao, J.A.L. Pallone, R.J. Poppi, Food Cont. 35, 227–232 (2014). https://doi.org/10.1016/j.foodcont.2013.07.010

    Article  CAS  Google Scholar 

  38. M. Grube, M. Marauska, M. Berkers, Quantitative analysis of oat by Infrared spectroscopy, in Spectroscopy of Biological Molecules: New Directions. ed. by J. Greve, G.J. Puppels, C. Otto (Springer, Dordrecht, 1999), pp.617–618

    Chapter  Google Scholar 

  39. M. Boczkowska, J. Zebrowski, J. Nowosielski, I. Kordulasinska, D. Nowosielska, W. Podyma, Genet. Resour. Crop. Evol. 64, 1829–1840 (2017). https://doi.org/10.1007/s10722-017-0555-8

    Article  Google Scholar 

  40. M. Carbonaro, P. Maselli, A. Nucara, Amino. Acids 43, 911–921 (2012). https://doi.org/10.1007/s00726-011-1151-4

    Article  CAS  Google Scholar 

  41. P. Yu, Z. Niu, D. Damiran, J. Agric. Food Chem. 58, 3460–3464 (2010). https://doi.org/10.1021/jf904179m

    Article  CAS  Google Scholar 

  42. L.A. Rubio, A. Pérez, R. Ruiz, M.A. Guzman, I. Aranda-Olmedo, A. Clemente, J. Sci. Food Agric. 94, 280–287 (2014). https://doi.org/10.1002/jsfa.6250

    Article  CAS  Google Scholar 

  43. C. Cao, M. Shen, J. Hu, J. Qi, P. Xie, Y. Zhou, Comparative study on the structure-properties relationships of native and debranched rice starch. CyTA-J. Food (2020). https://doi.org/10.1080/19476337.2019.1710261

    Article  Google Scholar 

Download references

Funding

This work was financially granted and supported by the Scientific and Technological Research Council of Turkey (TUBITAK- grand number: 214O629) to conduct fermentation studies.

Author information

Authors and Affiliations

Authors

Contributions

RT: Investigation, Formal analysis, Literature review, Writing—review and editing. SY: Project management; Conceptualization; Data curation; Formal analysis; Investigation; Methodology; Roles/Writing—original draft; Writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ramazan Tosun.

Ethics declarations

Conflict of interest

We have no conflicts of interest to declare that are relevant to the content of this article.

Ethical approval

This research article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosun, R., Yasar, S. Comparing vibrational spectroscopic method with wet chemistry to determine nutritional and chemical changes in solid state fermented oats grain (Avena sativa L.). Food Measure 17, 984–997 (2023). https://doi.org/10.1007/s11694-022-01672-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01672-z

Keywords

Navigation