Skip to main content
Log in

Monitoring of critical parameters in thermophilic solid-state fermentation process of soybean meal using NIR spectroscopy and chemometrics

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Monitoring of critical process parameters was conducted by combining near infrared (NIR) spectroscopy and chemometrics to achieve real-time measurements and adjustments of thermophilic solid-state fermentation of soybean meal (SBM). Fermentation was conducted by Bacillus licheniformis YYC4 under the conditions of unsterilized SBM 20 g, inoculation 107 CFU g-1 wet basis, ratio of substrate to water 1:1.8 (g mL-1), MgSO4 0.12%, and 55 °C for 60 h in a 150 mL beaker. During fermentation, pH increased from 6.60 to 9.21 (0–50 h), followed by a slight change to 9.09 (50–60 h). Moisture decreased gradually from 66.62 to 58.01%. Soluble protein decreased slightly from 4.92 to 4.48% (0–2 h) before increasing significantly to 16.26% (30 h) and 18.57% (50 h). Then, it decreased to 17.19% at the end of fermentation (60 h). Trypsin inhibitor (TI) activity remained almost no change within 0–6 h before decreasing from 8.19 to 3.19 mg g-1 (50 h). After that, a further decrease to 2.15 mg g-1 (60 h) was observed. Based on offline analytics, synergy interval partial least squares (siPLS) models were established to monitor these variables after spectral pretreatment. Root mean squared errors (RMSEP) and coefficient of determination (RP) of prediction could achieve 0.169 and 0.9781, 0.313% and 0.9909, 0.681% and 0.9883, 0.236 mg g-1 and 0.9916 for pH, moisture, soluble protein and TI contents respectively, with an acceptable accuracy. The satisfactory prediction model underpins the potential of NIR spectroscopy in bioprocess monitoring applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. E.M. Hoffmann, S. Muetzel, K. Becker, Anim. Feed Sci. Technol. 106, 189–197 (2003). https://doi.org/10.1016/S0377-8401(02)00321-8

    Article  CAS  Google Scholar 

  2. T. Holzhauser, O. Wackermann, B. Ballmer-Weber, C. Bindslev-Jensen, J. Scibilia, L. Perono-Garoffo, S. Utsumi, L. Poulsen, S. Vieths, J. Allergy Clin. Immunol. 123, 452–458 (2009). https://doi.org/10.1016/j.jaci.2008.09.034

    Article  CAS  Google Scholar 

  3. C.H. Dai, H.L. Ma, R.H. He, L.R. Huang, S.Y. Zhu, Q.Z. Ding, L. Luo, LWT 86, 1–7 (2017). https://doi.org/10.1016/j.lwt.2017.07.041

    Article  CAS  Google Scholar 

  4. A. Biz, A.T.J. Finkler, L.O. Pitol, B.S. Medina, N. Krieger, D.A. Mitchell, Biochem. Eng. J. 111, 54–62 (2016). https://doi.org/10.1016/j.bej.2016.03.007

    Article  CAS  Google Scholar 

  5. P. Selvakumar, L. Ashakumary, A. Pandey, Bioresour Technol. 65, 83–85 (1998). https://doi.org/10.1016/S0960-8524(98)00012-1

    Article  CAS  Google Scholar 

  6. A.R. de Olmos, M.S. Garro, Food Biosci. 35, 100584 (2020). https://doi.org/10.1016/j.fbio.2020.100584

    Article  CAS  Google Scholar 

  7. L. Chen, Z.J. Zhao, W. Yu, L. Zhang, L.J. Li, W. Gu, H.Y. Xu, B.D. Wei, X.G. Yan, AMB Express. 11, 23 (2021). https://doi.org/10.1186/s13568-021-01184-x

    Article  CAS  Google Scholar 

  8. C.H. Dai, Y.Z. Hou, H.N. Xu, L.R. Huang, M. Dabbour, B.K. Mintah, R.H. He, H.L. Ma, J. Sci. Food Agric. 102, 557–566 (2021). https://doi.org/10.1002/jsfa.11384

    Article  CAS  Google Scholar 

  9. X.S. Hou, C.H. Dai, Y.X. Tang, Z. Xing, B.K. Mintah, M. Dabbour, Q.Z. Ding, R.H. He, H.L. Ma, LWT 116, 108520 (2019). https://doi.org/10.1016/j.lwt.2019.108520

    Article  CAS  Google Scholar 

  10. A. Corma, S. Iborra, A. Velty, Chem. Rev. 107, 2411–2502 (2007). https://doi.org/10.1021/cr050989d

    Article  CAS  Google Scholar 

  11. R. Zimmerleiter, J. Kager, R. Nikzad-Langerodi, V. Berezhinskiy, F. Westad, C. Herwig, M. Brandstetter, Anal. Bioanal Chem. 412, 2103–2109 (2020). https://doi.org/10.1007/s00216-019-02227-w

    Article  CAS  Google Scholar 

  12. A. González-Mohino, T. Pérez-Palacios, T. Antequera, J. Ruiz-Carrascal, L.S. Olegario, S. Grassi, Foods. 9, 1294 (2020). https://doi.org/10.3390/foods9091294

    Article  Google Scholar 

  13. S.W. Fan, T.H. Pan, G.Q. Li, Int. J. Food Microbiol. 16, 20200127 (2020). https://doi.org/10.1515/ijfe-2020-0127

    Article  CAS  Google Scholar 

  14. A.C. Barchi, S. Ito, B. Escaramboni, P. de Oliva Neto, R.D. Herculano, M.C.R. Miranda, F.J. Passalia, J.C. Rocha, E.G.F. Nunez, Process. Biochem. 51, 1338–1347 (2016). https://doi.org/10.1016/j.procbio.2016.07.017

    Article  CAS  Google Scholar 

  15. H. Jiang, G.H. Liu, C.L. Mei, S. Yu, X.H. Xiao, Y.H. Ding, Spectrochim. Acta A Mol. Biomol. Spectrosc. 97, 277–283 (2012). https://doi.org/10.1016/j.saa.2012.06.024

    Article  CAS  Google Scholar 

  16. W.G. Lu, Z.X. Wen, H.C. Li, D.H. Yuan, J.Y. Li, H. Zhang, Z.W. Huang, S.Y. Cui, W.Y. Du, Theor. Appl. Genet. 126, 425–433 (2013). https://doi.org/10.1007/s00122-012-1990-8

    Article  CAS  Google Scholar 

  17. M.L. Kakade, J.J. Rackis, J.E. McGhee, G. Puski, Cereal Chem. 51, 376–381 (1974). http://dx.doi.org/

    CAS  Google Scholar 

  18. L. Norgaard, A. Saudland, J. Wagner, J.P. Nielsen, L. Munck, S.B. Engelsen, Appl. Spectrosc. 54, 413–419 (2000). https://doi.org/10.1366/0003702001949500

    Article  CAS  Google Scholar 

  19. F. Mabood, J. Hussain, F. Jabeen, G. Abbas, B. Allaham, M. Albroumi, S. Alghawi, S. Alameri, S.A. Gilani, A. Al-Harrasi, Q.M.I. Haq, S. Farroq, Food Addit. Contam. Part. A Chem. Anal. Control Expo Risk Assess. 35, 1052–1060 (2018). https://doi.org/10.1080/19440049.2018.1457802

    Article  CAS  Google Scholar 

  20. H.J. Liu, X. Zhong, Y. Huang, C.C. Qiao, C. Shao, R. Li, Q.R. Shen, Pedosphere. 28, 261–268 (2018). https://doi.org/10.1016/S1002-0160(18)60012-8

    Article  CAS  Google Scholar 

  21. J.W.C. Wong, K.F. Mak, N.W. Chan, A. Lam, M. Fang, L.X. Zhou, Q.T. Wu, X.D. Liao, Bioresour Technol. 76, 99–106 (2001). https://doi.org/10.1016/S0960-8524(00)00103-6

    Article  CAS  Google Scholar 

  22. J.Y. Lim, J.J. Kimm, D.S. Lee, G.H. Kim, J.Y. Shim, I. Lee, J.Y. Imm, Food Chem. 120, 255–260 (2010). https://doi.org/10.1016/j.foodchem.2009.10.017

    Article  CAS  Google Scholar 

  23. Y.L. Gao, C.S. Wang, Q.H. Zhu, G.Y. Qian, J. Integr. Agric. 12, 869–876 (2013). https://doi.org/10.1016/S2095-3119(13)60305-6

    Article  Google Scholar 

  24. K.J. Hong, C.H. Lee, S.W. Kim, J. Med. Chem. 7, 430–435 (2004). https://doi.org/10.1089/jmf.2004.7.430

    Article  CAS  Google Scholar 

  25. A.W. Burks, G. Cockrell, C. Connaughton, J. Guin, W. Allen, R.M. Helm, Int. Arch. Allergy Immunol. 105, 143–149 (1994). https://doi.org/10.1159/000236816

    Article  CAS  Google Scholar 

  26. M. Blanco, J. Coello, H. Iturriaga, S. Maspoch, J. Pagès, Chemometr Intell. Lab. Syst. 50, 75–82 (2000). https://doi.org/10.1016/S0169-7439(99)00048-9

    Article  CAS  Google Scholar 

  27. Z. Xing, H. Jiang, R.H. He, K.M. Benjamin, D. Mokhtar, C.H. Dai, L. Sun, H.L. Ma, J. Food Saf. 40, e12754 (2020). https://doi.org/10.1111/jfs.12754

    Article  Google Scholar 

  28. J.B. Liang, D.L. Zhang, X. Guo, Q.Y. Xu, X.X. Xie, C.L. Zhang, G. Bai, X. Xiao, N. Chen, Bioprocess. Biosyst Eng. 36, 1879–1887 (2013). https://doi.org/10.1007/s00449-013-0962-y

    Article  CAS  Google Scholar 

  29. B.Q. Wang, B.Z. Peng, J. Food Sci. 82, 358–363 (2017). https://doi.org/10.1111/1750-3841.13604

    Article  CAS  Google Scholar 

  30. M. Goncalves, N.T. Paiva, J.M. Ferra, J. Martins, F.D. Magalhães, L. Carvalho, Int. J. Adhes. Adhes. 93, 47–51 (2019). https://doi.org/10.1016/j.ijadhadh.2019.01.021

    Article  CAS  Google Scholar 

  31. J. Muncan, K. Tei, R. Tsenkova, Sensors. 21, 177 (2021). https://doi.org/10.3390/s21010177

    Article  CAS  Google Scholar 

  32. H. Büning-Pfaue, Food Chem. 82, 107–115 (2003). https://doi.org/10.1016/S0308-8146(02)00583-6

    Article  CAS  Google Scholar 

  33. S.W. Bruun, I. Sondergaard, S. Jacobsen, J. Agric, Food Chem. 55, 7234–7243 (2007). https://doi.org/10.1021/jf063680j

    Article  CAS  Google Scholar 

  34. Y. Ozaki, in Applications in chemistry in near-infrared spectroscopy: Principles, instruments and applications. ed. by H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, (Wiley-VCH, Weinheim, 2001), pp. 163–178. https://doi.org/10.1002/9783527612666.ch08

Download references

Acknowledgements

This study was supported by grants from National Natural Science Foundation of China (31972208), Primary Research & Development Plan of Jiangsu Province (BE2021337, BE2020329) and Agricultural Science and Technology Support Program of Zhenjiang in China (NY2020014).

Author information

Authors and Affiliations

Authors

Contributions

Chunhua Dai, Xueting Xu and Wei Huang: Investigation, Data curation, Formal analysis, Writing-original draft; Pengfei Yan and Yizhi Hou: Writing-Reviewing & Editing, Checking English language; Ronghai He and Haile Ma: Supervision.

Corresponding author

Correspondence to Ronghai He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, C., Xu, X., Huang, W. et al. Monitoring of critical parameters in thermophilic solid-state fermentation process of soybean meal using NIR spectroscopy and chemometrics. Food Measure 17, 576–585 (2023). https://doi.org/10.1007/s11694-022-01628-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01628-3

Keywords

Navigation