Skip to main content
Log in

Effect of different drying techniques on structural characteristics and bioactivities of polysaccharides extracted from (Lithocarpus litseifolius [Hance] Chun) sweet tea leaves

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Sweet tea is made from the leaves of Lithocarpus litseifolius (Hance) Chun, which is an herbal tea widely consumed in Chinese folk. In this study, five drying techniques were applied to dry sweet tea leaves, and the structural characteristics, antioxidant activities, α-glucosidase inhibitory activities, and antiglycation activities of sweet tea polysaccharides (STPs) were systematically evaluated. The extraction yields of STPs ranged from 2.37 to 4.09%, and STPs prepared by hot-air drying had the highest extraction yield. The five polysaccharides exhibited the same constituent monosaccharides, similar preliminary structural characteristics, different molecular weights (Mw), and different molar ratios of constituent monosaccharides. Critically, five STPs solutions exhibited non-Newtonian behavior, and STPs obtained by hot-air drying had the highest Mw and apparent viscosity. Compared with other drying technologies, relatively high total phenolic content was measured in the STPs obtained by freeze-drying (31.32 ± 1.77 mg GAE/g) and hot-air drying (29.13 ± 1.36 mg GAE/g). Furthermore, five STPs exhibited excellent biological properties, including antioxidant activities, α-glucosidase inhibitory activities, and antiglycation activities. Ultimately, the heat map analysis found that the bioactivities of STPs were related to their high Mw and high content of total phenolic. All results suggested that STPs, especially polysaccharides prepared by hot-air drying and freeze-drying, had good development prospects and application values as functional ingredients for the antidiabetic functional food development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Shang, H.Y. Liu, M. Luo, Y. Xia, X. Yang, H.Y. Li, D.T. Wu, Q. Sun, F. Geng, H.B. Li, R.Y. Gan, Sweet tea (Lithocarpus polystachyus rehd.) as a new natural source of bioactive dihydrochalcones with multiple health benefits. Crit. Rev. Food Sci. (2020). https://doi.org/10.1080/10408398.2020.1830363

    Article  Google Scholar 

  2. C.J. Zhou, S. Huang, J.Q. Liu, S.Q. Qiu, F.Y. Xie, H.P. Song, Y.S. Li, S.Z. Hou, X.P. Lai, Sweet tea leaves extract improves leptin resistance in diet-induced obese rats. J. Ethnopharmacol 145(1), 386–392 (2013). https://doi.org/10.1016/j.jep.2012.09.057

    Article  CAS  PubMed  Google Scholar 

  3. H. Guo, M.X. Fu, Y.X. Zhao, H. Li, H.B. Li, D.T. Wu, R.Y. Gan, The chemical, structural, and biological properties of crude polysaccharides from sweet tea (Lithocarpus litseifolius (Hance) Chun) based on different extraction technologies. Foods 10, 1779 (2021)

    Article  CAS  Google Scholar 

  4. H.Q. Dong, M. Li, F. Zhu, F.L. Liu, J.B. Huang, Inhibitory potential of trilobatin from Lithocarpus polystachyus Rehd against α-glucosidase and α-amylase linked to type 2 diabetes. Food Chem. 130(2), 261–266 (2012). https://doi.org/10.1016/j.foodchem.2011.07.030

    Article  CAS  Google Scholar 

  5. https://www.who.int/health-topics/diabetes#tab=tab_1

  6. E.J. Henriksen, M.K. Diamond-Stanic, E.M. Marchionne, Oxidative stress and the etiology of insulin resistance and type 2 diabetes. Free Radic. Biol. Med. 51(5), 993–999 (2011). https://doi.org/10.1016/j.freeradbiomed.2010.12.005

    Article  CAS  PubMed  Google Scholar 

  7. A.C. Maritim, R.A. Sanders, J.B. Watkins, Diabetes, oxidative stress, and antioxidants: a review. J. Biochem. Mol. Toxicol. 17(1), 24–38 (2003). https://doi.org/10.1002/jbt.10058

    Article  CAS  PubMed  Google Scholar 

  8. L. Fan, J. Li, K. Deng, L. Ai, Effects of drying methods on the antioxidant activities of polysaccharides extracted from Ganoderma lucidum. Carbohydr. Polym. 87(2), 1849–1854 (2012). https://doi.org/10.1016/j.carbpol.2011.10.018

    Article  CAS  Google Scholar 

  9. F. Li, K.L. Feng, J.C. Yang, Y.S. He, H. Guo, S.P. Wang, R.Y. Gan, D.T. Wu, Polysaccharides from dandelion (Taraxacum mongolicum) leaves: insights into innovative drying techniques on their structural characteristics and biological activities. Int. J. Biol. Macromol. 167, 995–1005 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.054

    Article  CAS  PubMed  Google Scholar 

  10. M. Harguindeguy, D. Fissore, On the effects of freeze-drying processes on the nutritional properties of foodstuff: a review. Dry. Technol. 38(7), 846–868 (2019). https://doi.org/10.1080/07373937.2019.1599905

    Article  CAS  Google Scholar 

  11. Q. Yuan, Y. He, P.Y. Xiang, Y.J. Huang, Z.W. Cao, S.W. Shen, L. Zhao, Q. Zhang, W. Qin, D.T. Wu, Influences of different drying methods on the structural characteristics and multiple bioactivities of polysaccharides from okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 147, 1053–1063 (2020). https://doi.org/10.1016/j.ijbiomac.2019.10.073

    Article  CAS  PubMed  Google Scholar 

  12. M.U. Hasan, A.U. Malik, S. Ali, A. Imtiaz, A. Munir, W. Amjad, R. Anwar, Modern drying techniques in fruits and vegetables to overcome postharvest losses: a review. J. Food Process. Preserv. (2019). https://doi.org/10.1111/jfpp.14280

    Article  Google Scholar 

  13. Y. Wang, Y. Liu, J. Huo, X. Zhao, J. Zheng, X. Wei, Effect of different drying methods on chemical composition and bioactivity of tea polysaccharides. Int. J. Biol. Macromol. 62, 714–719 (2013). https://doi.org/10.1016/j.ijbiomac.2013.10.006

    Article  CAS  PubMed  Google Scholar 

  14. J.K. Yan, L.X. Wu, Z.R. Qiao, W.D. Cai, H. Ma, Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 271, 588–596 (2019). https://doi.org/10.1016/j.foodchem.2018.08.012

    Article  CAS  PubMed  Google Scholar 

  15. Y. Wang, L. Zhang, J. Johnson, M. Gao, J. Tang, J.R. Powers, S. Wang, Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food Bioprocess Tech. 7(1), 278–288 (2013). https://doi.org/10.1007/s11947-013-1055-2

    Article  CAS  Google Scholar 

  16. H. Li, L. Xie, Y. Ma, M. Zhang, Y. Zhao, X. Zhao, Effects of drying methods on drying characteristics, physicochemical properties and antioxidant capacity of okra. LWT-Food Sci. Technol. 101, 630–638 (2019). https://doi.org/10.1016/j.lwt.2018.11.076

    Article  CAS  Google Scholar 

  17. D.T. Wu, K.L. Feng, L. Huang, R.Y. Gan, Y.C. Hu, L. Zou, Deep eutectic solvent-assisted extraction, partially structural characterization, and bioactivities of acidic polysaccharides from lotus leaves. Foods 10(10), 2330 (2021)

    Article  CAS  Google Scholar 

  18. D.T. Wu, Y. He, M.X. Fu, R.Y. Gan, Y.C. Hu, L.X. Peng, G. Zhao, L. Zou, Structural characteristics and biological activities of a pectic-polysaccharide from okra affected by ultrasound assisted metal-free Fenton reaction. Food Hydrocolloid. 122, 107085 (2022). https://doi.org/10.1016/j.foodhyd.2021.107085

    Article  CAS  Google Scholar 

  19. H. Guo, H.Y. Li, L. Liu, C.Y. Wu, H. Liu, L. Zhao, Q. Zhang, Y.T. Liu, S.Q. Li, W. Qin, D.T. Wu, Effects of sulfated modification on the physicochemical properties and biological activities of beta-glucans from Qingke (Tibetan hulless barley). Int. J. Biol. Macromol. 141, 41–50 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.245

    Article  CAS  PubMed  Google Scholar 

  20. H. Wu, D. Xiao, J. Lu, C. Jiao, S. Li, Y. Lei, D. Liu, J. Wang, Z. Zhang, Y. Liu, G. Shen, S. Li, Effect of high-pressure homogenization on microstructure and properties of pomelo peel flour film-forming dispersions and their resultant films. Food Hydrocolloid. 102, 105628 (2020). https://doi.org/10.1016/j.foodhyd.2019.105628

    Article  CAS  Google Scholar 

  21. X.R. Nie, Y. Fu, D.T. Wu, T.T. Huang, Q. Jiang, L. Zhao, Q. Zhang, D.R. Lin, H. Chen, W. Qin, Ultrasonic-assisted extraction, structural characterization, chain conformation, and biological activities of a pectic-polysaccharide from okra (Abelmoschus esculentus). Molecules 25(5), 1155 (2020). https://doi.org/10.3390/molecules25051155

    Article  CAS  PubMed Central  Google Scholar 

  22. H. Guo, M.X. Fu, D.T. Wu, Y.X. Zhao, H. Li, H.B. Li, R.Y. Gan, Structural characteristics of crude polysaccharides from 12 selected Chinese teas, and their antioxidant and anti-diabetic activities. Antioxidants-Basel 10(10), 1562 (2021). https://doi.org/10.3390/antiox10101562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. X. Liu, X. Zhang, X. Zhang, F. Li, H. Zhao, Effects of different drying methods on the physicochemical and antioxidative characteristics of Osmunda japonica Thunb. polysaccharides. J. Food Process. Preserv. (2020). https://doi.org/10.1111/jfpp.14742

    Article  Google Scholar 

  24. B.O. Alejandra, R.G. Guillermo, F.P. Africa, V. Blanca, F.B. Juan, Strawberry dietary fiber functionalized with phenolic antioxidants from olives. Interactions between polysaccharides and phenolic compounds. Food Chem. (2019). https://doi.org/10.1016/j.foodchem.2018.12.057

    Article  Google Scholar 

  25. X.R. Nie, H.Y. Li, G. Du, S. Lin, R. Hu, H.Y. Li, L. Zhao, Q. Zhang, H. Chen, D.T. Wu, W. Qin, Structural characteristics, rheological properties, and biological activities of polysaccharides from different cultivars of okra (Abelmoschus esculentus) collected in China. Int. J. Biol. Macromol. 139, 459–467 (2019). https://doi.org/10.1016/j.ijbiomac.2019.08.016

    Article  CAS  PubMed  Google Scholar 

  26. Z. Guo, S. Zeng, Y. Zhang, X. Lu, Y. Tian, B. Zheng, The effects of ultra-high pressure on the structural, rheological and retrogradation properties of lotus seed starch. Food Hydrocolloid. 44, 285–291 (2015). https://doi.org/10.1016/j.foodhyd.2014.09.014

    Article  CAS  Google Scholar 

  27. H. Yue, Q. Xu, G. Bian, Q. Guo, Z. Fang, W. Wu, Structure characterization and immunomodulatory activity of a new neutral polysaccharide SMP-0b from Solanum muricatum. Int. J. Biol. Macromol. 155, 853–860 (2020). https://doi.org/10.1016/j.ijbiomac.2019.11.071

    Article  CAS  PubMed  Google Scholar 

  28. C. Hu, H.X. Li, M.T. Zhang, L.F. Liu, Structure characterization and anticoagulant activity of a novel polysaccharide from Leonurus artemisia (Laur.). RSC Adv. 10(4), 2254–2266 (2020). https://doi.org/10.1039/c9ra10853j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. J.Y. Yin, H.X. Lin, J. Li, Y.X. Wang, S.W. Cui, S.P. Nie, M.Y. Xie, Structural characterization of a highly branched polysaccharide from the seeds of Plantago asiatica L. Carbohydr. Polym. 87(4), 2416–2424 (2012). https://doi.org/10.1016/j.carbpol.2011.11.009

    Article  CAS  Google Scholar 

  30. E.G. Shakhmatov, K.V. Atukmaev, E.N. Makarova, Structural characteristics of pectic polysaccharides and arabinogalactan proteins from Heracleum sosnowskyi Manden. Carbohydr. Polym. 136, 1358–1369 (2020). https://doi.org/10.1016/j.carbpol.2015.10.041

    Article  CAS  Google Scholar 

  31. O.I. Naumenko, H. Zheng, A.S. Shashkov, Y. Sun, S.N. Senchenkova, L. Bai, J. Wang, H. Wang, Q. Li, Y.A. Knirel, Y. Xiong, Escherichia albertii EA046 (O9) harbors two polysaccharide gene clusters for synthesis of the O-antigen by the Wzx/Wzy-dependent pathway and a mannan shared by Escherichia coli O8 by the Wzm/Wzt-dependent pathway. Int. J. Biol. Macromol. 142, 609–614 (2020). https://doi.org/10.1016/j.ijbiomac.2019.09.135

    Article  CAS  PubMed  Google Scholar 

  32. F. Zhi, T.L. Yang, Q. Wang, B. Jiang, Z.P. Wang, J. Zhang, Y.Z. Chen, Isolation, structure and activity of a novel water-soluble polysaccharide from Dioscorea opposita Thunb. Int. J. Biol. Macromol. 133, 1201–1209 (2019). https://doi.org/10.1016/j.ijbiomac.2019.04.087

    Article  CAS  PubMed  Google Scholar 

  33. X.X. Liu, H.M. Liu, Y.Y. Yan, L.Y. Fan, J.N. Yang, X.D. Wang, G.Y. Qin, Structural characterization and antioxidant activity of polysaccharides extracted from jujube using subcritical water. LWT-Food Sci. Technol. 117, 108645 (2020). https://doi.org/10.1016/j.lwt.2019.108645

    Article  CAS  Google Scholar 

  34. W.S. Zhang, Q.L. Sun, W. Zheng, Y. Zhang, J. Du, C.X. Dong, N. Tao, Structural characterization of a polysaccharide from Coreopsis tinctoria Nutt. and its function to modify myeloid derived suppressor cells. Int. J. Biol. Macromol. 126, 926–933 (2019)

    Article  CAS  Google Scholar 

  35. Q. Yuan, J. Zhang, C. Xiao, C. Harqin, M. Ma, T. Long, Z. Li, Y. Yang, J. Liu, L. Zhao, Structural characterization of a low-molecular-weight polysaccharide from Angelica pubescens Maxim. F. biserrata Shan et Yuan root and evaluation of its antioxidant activity. Carbohydr. Polym. 236, 116047 (2020). https://doi.org/10.1016/j.carbpol.2020.116047

    Article  CAS  PubMed  Google Scholar 

  36. C. Guo, S. Zhang, Y. Wang, M. Li, K. Ding, Isolation and structure characterization of a polysaccharide from Crataegus pinnatifida and its bioactivity on gut microbiota. Int. J. Biol. Macromol. 154, 82–91 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.058

    Article  CAS  PubMed  Google Scholar 

  37. W. Li, D.T. Wu, F. Li, R.Y. Gan, Y.C. Hu, L. Zou, Structural and biological properties of water soluble polysaccharides from Lotus leaves: effects of drying techniques. Molecules 26(15), 4395 (2021). https://doi.org/10.3390/molecules26154395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. L. Ma, H. Chen, W. Zhu, Z. Wang, Effect of different drying methods on physicochemical properties and antioxidant activities of polysaccharides extracted from mushroom Inonotus obliquus. Food Res. Int. 50(2), 633–640 (2013). https://doi.org/10.1016/j.foodres.2011.05.005

    Article  CAS  Google Scholar 

  39. S.Q. Huang, S. Ding, L. Fan, Antioxidant activities of five polysaccharides from Inonotus obliquus. Int. J. Biol. Macromol. 50(5), 1183–1187 (2012). https://doi.org/10.1016/j.ijbiomac.2012.03.019

    Article  CAS  PubMed  Google Scholar 

  40. M. Fan, J. Zhu, Y. Qian, W. Yue, Y. Xu, D. Zhang, Y. Yang, X. Gao, H. He, D. Wang, Effect of purity of tea polysaccharides on its antioxidant and hypoglycemic activities. J. Food Biochem. 44(8), e13277 (2020). https://doi.org/10.1111/jfbc.13277

    Article  CAS  PubMed  Google Scholar 

  41. S. Ahmadi, M. Sheikh-Zeinoddin, S. Soleimanian-Zad, F. Alihosseini, H. Yadav, Effects of different drying methods on the physicochemical properties and antioxidant activities of isolated acorn polysaccharides. LWT-Food Sci. Technol. 100, 1–9 (2019). https://doi.org/10.1016/j.lwt.2018.10.027

    Article  CAS  Google Scholar 

  42. X. Peng, J. Ma, F. Chen, M. Wang, Naturally occurring inhibitors against the formation of advanced glycation end-products. Food Funct. 2(6), 289–301 (2011). https://doi.org/10.1039/c1fo10034c

    Article  CAS  PubMed  Google Scholar 

  43. J. Hafsa, K.M. Hammi, D.L. Cerf, K. Limem, H. Majdoub, B. Charfeddine, Characterization, antioxidant and antiglycation properties of polysaccharides extracted from the medicinal halophyte Carpobrotus edulis L. Int. J. Biol. Macromol. 107(Pt A), 833–842 (2018). https://doi.org/10.1016/j.ijbiomac.2017.09.046

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Local Financial Funds of the National Agricultural Science and Technology Center, Chengdu (No. NASC2020KR02), the Local Financial Funds of the National Agricultural Science and Technology Center, Chengdu (No. NASC2021KR01), and the Scientific Research Foundation of Chengdu University (2081921047).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ding-Tao Wu or Ren-You Gan.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, H., Fu, MX., Zhao, YX. et al. Effect of different drying techniques on structural characteristics and bioactivities of polysaccharides extracted from (Lithocarpus litseifolius [Hance] Chun) sweet tea leaves. Food Measure 16, 4050–4063 (2022). https://doi.org/10.1007/s11694-022-01510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01510-2

Keywords

Navigation