Skip to main content

Advertisement

Log in

Changes in bioactive properties of dry bean extracts during enzymatic hydrolysis and in vitro digestion steps

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Due to good protein quality and beneficial nutritional contents, dry beans have potential to be processed as functional food ingredients. Therefore, phenolic content, free radical scavenging (FRSA), iron chelating (ICA), antidiabetic, antihypertensive, and antimicrobial activities of flour (BF), hydrocolloid extract (BHE) and high protein content extracts (BP1 and BP2 – aided dilute salt) of common bean were determined after in vitro digestion (gastric and intestinal) process and Alcalase and Savinase hydrolysis. The highest ICA (27.94 ± 0.52 mg EDTA/g) and antihypertensive activity (66.8% ACE inhibition) by BP2; antidiabetic activity (between 63.7 ± 6.0 and 83.5 ± 1.0% α-glucosidase inhibition, 46.2 ± 2.5 and 46.3 ± 0.8% α-amylase inhibition) by BF and BHE; phenolic content (113 ± 4 mg GA/g and 96 ± 1 mg quercetin/g) and FRSA (1807 ± 150 µmol Trolox/g) by BP1 and antimicrobial activity (E. coli, S. aureus) by BP1 and BP2 was determined after in vitro digestion. Alcalase enzyme produced dry bean hydrolysates with higher phenolic content, FRSA and ICC but caused in antidiabetic activity during hydrolysis process (except for BHE hydrolysates) while Savinase produced bioactive peptides with high α-amylase and α-glucosidase inhibition activity. Alcalase also generated antimicrobial peptides against L. monocytogenes, S. aureus, and E. coli. The study showed the high potential of dry bean to be processed for functional food ingredient. It was also stated that the applied extraction method was critical to obtain the bioactive components from dry bean seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. A.J. Hernández-Álvarez, J. Carrasco-Castilla, G. Dávila-Ortiz, M. Alaiz, J. Girón-Calle, J. Vioque-Peña, C. Jacinto-Hernández, C. Jiménez-Martínez, J. Sci. Food Agric. 93, 961 (2013)

    Article  PubMed  Google Scholar 

  2. A.K. Ramírez-Jiménez, M. Gaytán-Martínez, E. Morales-Sánchez, G. Loarca-Piña, LWT - Food Sci Technol 89, 674 (2018)

    Article  Google Scholar 

  3. A. Palacio-Márquez, D. Ojeda-Barrios, J. Jiménez-Castro, P. Preciado-Rangel, O.A. Hernández-Rodríguez, E. Sánchez, Not Bot. Horti Agrobot Cluj-Napoca 49, 1 (2021)

    Google Scholar 

  4. B.D. Oomah, L. Kotzeva, M. Allen, P.Z. Bassinello, J. Sci. Food Agric. 94, 1349 (2014)

    Article  CAS  PubMed  Google Scholar 

  5. A. Tassoni, T. Tedeschi, C. Zurlini, I.M. Cigognini, J.I. Petrusan, Ó Rodríguez, S. Neri, A. Celli, L. Sisti, P. Cinelli, F. Signori, G. Tsatsos, M. Bondi, S. Verstringe, G. Bruggerman, and P. F. X. Corvini, Molecules 25, (2020)

  6. L.Y. Aydemir, A.A. Gökbulut, Y. Baran, A. Yemenicioǧlu, Food Hydrocoll. 36, 130 (2014)

    Article  CAS  Google Scholar 

  7. S.M.F. Bessada, J.C.M. Barreira, M.B.P.P. Oliveira, Trends Food Sci Technol 93, 53 (2019)

    Article  CAS  Google Scholar 

  8. J.S. Alves, A.S. Rodrigues, K.I.B. Moro, C.P. Boeira, P.M.G. Londero, C.S. Rosa, Int. Food Res. J. 26, 565 (2019)

    CAS  Google Scholar 

  9. E.B.M. Daliri, D.H. Oh, B.H. Lee, Foods 6, 1 (2017)

    Article  Google Scholar 

  10. D. Orona-Tamayo, M.E. Valverde, O. Paredes-López, Crit. Rev. Food Sci. Nutr. 59, 1949 (2019)

    Article  CAS  PubMed  Google Scholar 

  11. C. Schisano, V. Narciso, M. Maisto, G. Annunziata, P. Grieco, E.M. Sommella, G.C. Tenore, E. Novellino, Eur. Food Res. Technol. 245, 2311 (2019)

    Article  CAS  Google Scholar 

  12. E. Valencia-Mejía, K.A. Batista, J.J.A. Fernández, K.F. Fernandes, Food Res. Int. 121, 238 (2019)

    Article  PubMed  Google Scholar 

  13. D.A. Luna-Vital, L. Mojica, E. González de Mejía, S. Mendoza, and G. Loarca-Piña. Food Res. Int. 76, 39 (2015)

    Article  CAS  Google Scholar 

  14. M.E. Oseguera-Toledo, E. Gonzalez de, Mejia, S.L. Amaya-Llano, Food Res. Int. 76, 839 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. J. Ruiz-Ruiz, G. Dávila-Ortíz, L. Chel-Guerrero, D. Betancur-Ancona, J. Food Biochem. 37, 26 (2013)

    Article  CAS  Google Scholar 

  16. M.P. Hojilla-Evangelista, N. Sutivisedsak, R.L. Evangelista, H.N. Cheng, A. Biswas, JAOCS J. Am. Oil Chem. Soc. 95, 1001 (2018)

    Article  CAS  Google Scholar 

  17. K.C. Ferreira, J.A.C. Bento, M. Caliari, P.Z. Bassinello, J.D.J. Berrios, Cereal Chem. 99, 67 (2021)

    Article  Google Scholar 

  18. A. Ohara, V.G. Cason, T. Goia Nishide, F. Miranda De Matos, and R. J. Soares De Castro, Biocatal Biotransform 39, 100 (2021)

  19. L.Y. Aydemir, A. Yemenicioglu, LWT - Food Sci Technol 50, 686 (2013)

    Article  CAS  Google Scholar 

  20. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carrì, R. Boutrou, F.M. Corredig, D. Dupont, F.C. Dufour, L. Egger, M. Golding, L.S. Karakaya, B. Kirkhus, S. le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D.J. Mcclements, O. Enard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S.J. Wickham, W. Weitschies, A. Brodkorb, Food Func 5, 1113 (2014)

    Article  CAS  Google Scholar 

  21. L.Y. Aydemir, A. Yemenicioglu, J. Plant. Biochem. Physiol. 1, 4 (2013)

    Article  Google Scholar 

  22. P. Kadiroğlu, L.Y. Aydemir, F.G. Akcakaya, LWT- Food Sci Technol 93, 463 (2018)

    Article  Google Scholar 

  23. M. Çam, N.C. İçyer, J. Food Sci. Technol. 52, 1489 (2015)

    Article  PubMed  Google Scholar 

  24. P.M. Nielsen, D. Petersen, C. Dambmann, JFS: Food Chem Toxicol 66, 642 (2001)

  25. R. Gheshlaghi, J.M. Scharer, M. Moo-Young, P.L. Douglas, Anal. Biochem. 383, 93 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. M.M. Yust, J. Pedroche, J. Girón-Calle, J. Vioque, F. Millán, M. Alaiz, Food Chem. 85, 317 (2004)

    Article  CAS  Google Scholar 

  27. M. Sitohy, A. Osman, Food Chem. 120, 66 (2010)

    Article  CAS  Google Scholar 

  28. S.K. Sathe, Crit. Rev. BioTechnol. 22, 175 (2002)

    Article  CAS  PubMed  Google Scholar 

  29. L.A. Arogundade, C.O. Eromosele, O. Ademuyiwa, I.C. Eromosele, Food Hydrocoll. 23, 2294 (2009)

    Article  CAS  Google Scholar 

  30. M. Yuliana, C.T. Truong, L.H. Huynh, Q.P. Ho, Y.H. Ju, LWT - Food Sci Technol 55, 621 (2014)

    Article  CAS  Google Scholar 

  31. E.A. Makri, G.I. Doxastakis, J. Sci. Food Agric. 86, 1863 (2006)

    Article  CAS  Google Scholar 

  32. R. Gundogan, A. Can Karaca, LWT-Food Sci Technol 130, (2020)

  33. A. Starzyńska-Janiszewska, B. Stodolak, B. Mickowska, J. Sci. Food Agric. 94, 359 (2014)

    Article  PubMed  Google Scholar 

  34. I. Tirdiľová, A. Vollmannová, I. Jančo, M. Šnirc, J. Microbiol, BioTechnol. Food Sci. 9, 1187 (2020)

    Google Scholar 

  35. S.A. Marathe, V. Rajalakshmi, S.N. Jamdar, A. Sharma, Food Chem. Toxicol. 49, 2005 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. A.P. Cárdenas-Castro, J. Pérez-Jiménez, L.A. Bello-Pérez, J. Tovar, S.G. Sáyago-Ayerdi, Cereal Chem. 97, 670 (2020)

    Article  Google Scholar 

  37. F.G.B. Los, A.A.F. Zielinski, J.P. Wojeicchowski, A. Nogueira, I.M. Demiate, Curr. Opin. Food Sci. 19, 63 (2018)

    Article  Google Scholar 

  38. T. Ozdal, E. Capanoglu, F. Altay, Food Res. Int. 51, 954 (2013)

    Article  CAS  Google Scholar 

  39. B. Bartolome, I. Estrella, M.T. Hernandez, J. Food Sci. 65, 617 (2000)

    Article  CAS  Google Scholar 

  40. N. Xu, G. Chen, H. Liu, Molecules 22, (2017)

  41. Y.K. Wang, X. Zhang, G.L. Chen, J. Yu, L.Q. Yang, Y.Q. Gao, J. Func Foods 24, 359 (2016)

    Article  CAS  Google Scholar 

  42. S.R. Kanatt, K. Arjun, A. Sharma, Food Res. Int. 44, 3182 (2011)

    Article  CAS  Google Scholar 

  43. F. Kamran, R. Narsimha, Recent. Adv. Food Safety 1, 134 (2018)

    Google Scholar 

  44. T. Zheng, X. Yu, S. Pilla, Carbohydr. Polym. 157, 1333 (2017)

    Article  CAS  PubMed  Google Scholar 

  45. T. Janjarasskul, K. Tananuwong, T. Phupoksakul, S. Thaiphanit, LWT-Food Sci. Technol. 134, 110102 (2020)

    Article  CAS  Google Scholar 

  46. P. Guerrero, J.P. Kerry, K. de La Caba, Carbohydr Polym 111, 598 (2014)

  47. S. Cai, B.R. Singh, Biochem 43, 2541 (2004)

    Article  CAS  Google Scholar 

  48. P. Demir, S. Onde, F. Severcan, Spectrochimica Acta - Part A: Mol BioMol Spectrosc 135, 757 (2015)

    Article  CAS  Google Scholar 

  49. P. Guerrero, T. Garrido, I. Leceta, and K. de La Caba, Eur Polymer J 49, 3713 (2013)

  50. R.A. Baker, J. Food Sci. 62, 225 (1997)

    Article  CAS  Google Scholar 

  51. S. Dıblan, P. Kadiroğlu, L.Y. Aydemir, Food Health 4, 80 (2018)

    Article  Google Scholar 

  52. A. Naumann, G. Heine, R. Rauber, Field Crops Res 119, 78 (2010)

    Article  Google Scholar 

  53. B. Naderi, J. Keramat, A. Nasirpour, M. Aminifar, Int. J. Food Prop. 23, 1854 (2020)

    Article  CAS  Google Scholar 

  54. L. Mojica, K. Chen, E.G. de Mejía, J. Food Sci. 80, H188 (2015)

    Article  CAS  PubMed  Google Scholar 

  55. Y.C. Chiang, C.L. Chen, T.L. Jeng, T.C. Lin, J.M. Sung, Food Res. Int. 64, 939 (2014)

    Article  CAS  PubMed  Google Scholar 

  56. A. Jakubczyk, M. Karas, P. Stanikowski, B. Rutkowska, M. Dziedzic, E. Zielinska, K.A. Szychowski, U.E. Binduga, K. Rybczynska-Tkaczyk, B. Baraniak, Foods 9, (2020)

  57. B. Teixeira, C. Pires, M.L. Nunes, I. Batista, Int. J. Food Sci. Technol. 51, 2528 (2016)

    Article  CAS  Google Scholar 

  58. H.G. Akıllıoğlu, S. Karakaya, Eur. Food Res. and Technol. 229, 915 (2009)

    Article  Google Scholar 

  59. P. Garcia-Mora, J. Frias, E. Peñas, H. Zieliński, J.A. Giménez-Bastida, W. Wiczkowski, D. Zielińska, and C. Martínez-Villaluenga, J Func Foods 18, 319 (2015)

  60. K.P. Bastola, Y.N. Guragain, V. Bhadriraju, P.V. Vadlani, Am. J. Anal. Chem. 08, 416 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Adana Alparslan Turkes Science and Technology University Scientific Research Unit (18103028) and TUBITAK (1919B011804071 in 2209/A Program).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Dr. Sevgin Diblan, Havva Aktas and Gamze Cakitli. The first draft of the manuscript was written by Dr. Levent Yurdaer Aydemir and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript. CRediT: Conceptualization, Funding acquisition, Project administration, Resources, Supervision, Writing – original draft, Writing – review & editing: Dr. Levent Yurdaer Aydemir; Data curation, Investigation, Validation: Dr. Sevgin Diblan, Havva Aktas and Gamze Cakitli; Formal analysis: Dr. Sevgin Diblan and Havva Aktas; Visualization: Dr. Sevgin Diblan.

Corresponding author

Correspondence to Levent Yurdaer Aydemir.

Ethics declarations

Statements and declarations

This study was financially supported by Adana Alparslan Turkes Science and Technology University Scientific Research Unit (18103028) and TUBITAK (1919B011804071 in 2209/A Program). The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydemir, L.Y., Diblan, S., Aktas, H. et al. Changes in bioactive properties of dry bean extracts during enzymatic hydrolysis and in vitro digestion steps. Food Measure 16, 3682–3698 (2022). https://doi.org/10.1007/s11694-022-01484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01484-1

Keywords

Navigation