Skip to main content
Log in

A comparison on the physicochemical characteristics and biological functions of polysaccharides extracted from Taraxacum mongolicum by different extraction technologies

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

This study aimed to reveal the impacts of different extraction technologies on the physicochemical properties and in vitro biological functions of dandelion leaf polysaccharides (DLP). The results revealed that the yields (8.69–11.25%), contents of uronic acids (10.29–16.64%), contents of conjugated polyphenolics (26.56–57.67 mg GAE/g), and molecular weights (fraction 1, 4.36–7.68 × 104 Da; fraction 2, 3.22–4.56 × 104 Da) of DLP were notably affected by different extraction procedures, whereas the primary structures (rhamnogalacturonan I, homogalacturonan, and arabinogalactan segments) of DLP were overall stable according to the FT-IR and NMR analysis. Additionally, the in vitro biological functions of DLP were also obviously affected by different extraction procedures. More specifically, the strongest biological functions, including in vitro antioxidant capacities (ABTS, IC50 = 0.54 ± 0.01 mg/mL; DPPH, IC50 = 1.03 ± 0.02 mg/mL; Nitric oxide, IC50 = 0.21 ± 0.01 mg/mL), inhibitory effects on the formation of advanced glycation end products (IC50 = 1.46 ± 0.04 mg/mL), and inhibitory effects against α-glucosidase (IC50 = 14.28 ± 0.28 μg/mL), were found in DLP-P extracted by the pressurized hot water extraction among all selected technologies, which might be owing to its high contents of uronic acids and conjugated polyphenolics according to the heat map analysis. The findings can provide fundamental knowledge to select desirable extraction technologies for preparation of DLP. Indeed, the results are beneficial to well understanding the potential structure-function relationships of DLP.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Zhang, Y.-F. Hu, W. Li, G.-Y. Xu, K.-R. Wang, L. Li, H. Luo, L. Zou, J.-S. Wu, Food Chem. 373, 131380 (2022). https://doi.org/10.1016/j.foodchem.2021.131380

    Article  CAS  PubMed  Google Scholar 

  2. F. Li, K.L. Feng, J.C. Yang, Y.S. He, H. Guo, S.P. Wang, R.Y. Gan, D.T. Wu, Int. J. Biol. Macromol. 167, 995–1005 (2021). https://doi.org/10.1016/j.ijbiomac.2020.11.054

    Article  CAS  PubMed  Google Scholar 

  3. F. Ren, J. Li, X. Yuan, Y. Wang, Z. Yuan, J. Funct. Foods. 55, 263–274 (2019). https://doi.org/10.1016/j.jff.2019.02.034

    Article  CAS  Google Scholar 

  4. H.B. Wang, Carbohydr. Polym. 103, 140–142 (2014). https://doi.org/10.1016/j.carbpol.2013.12.029

    Article  CAS  PubMed  Google Scholar 

  5. X.Y. Chen, H.Y. Ji, C.F. Zhang, A.J. Liu, J. Food Meas. Charact 14, 194–206 (2020). https://doi.org/10.1007/s11694-019-00281-7

    Article  Google Scholar 

  6. M.M. Chen, J.J. Wu, S.S. Shi, Y.L. Chen, H.J. Wang, H.W. Fan, S.C. Wang, Carbohyd. Polym. 152, 241–252 (2016). https://doi.org/10.1016/j.carbpol.2016.06.110

    Article  CAS  Google Scholar 

  7. L. Wang, J. Gao, L. Li, J. Huang, Y. Yang, Y. Xu, Y. Wang, Y. Liu, Stärke 73(3–4), 2000051 (2021). https://doi.org/10.1002/star.202000051

    Article  CAS  Google Scholar 

  8. L. Lin, Y. Zhu, C. Li, L. Liu, D. Surendhiran, H. Cui, Carbohyd. Polym. 198, 225–232 (2018). https://doi.org/10.1016/j.carbpol.2018.06.092

    Article  CAS  Google Scholar 

  9. Y. Fu, F. Li, Y. Ding, H.Y. Li, X.R. Xiang, Q. Ye, J. Zhang, L. Zhao, W. Qin, R.Y. Gan, D.T. Wu, Int. J. Biol. Macromol. 146, 508–517 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.273

    Article  CAS  PubMed  Google Scholar 

  10. Q. Yuan, S. Lin, Y. Fu, X.R. Nie, W. Liu, Y. Su, Q.H. Han, L. Zhao, Q. Zhang, D.R. Lin, W. Qin, D.T. Wu, Int. J. Biol. Macromol. 127, 178–186 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  11. D.T. Wu, W. Liu, M.L. Xian, G. Du, X. Liu, J.J. He, P. Wang, W. Qin, L. Zhao, Foods 9(4), 456 (2020). https://doi.org/10.3390/foods9040456

    Article  CAS  PubMed Central  Google Scholar 

  12. J. Gu, H. Zhang, C. Wen, J. Zhang, Y. He, H. Ma, Y. Duan, Food Res. Int. 136, 109345 (2020). https://doi.org/10.1016/j.foodres.2020.109345

    Article  CAS  PubMed  Google Scholar 

  13. C. Chen, B. Zhang, Q. Huang, X. Fu, R.H. Liu, Ind. Crops. Prod. 100, 1–11 (2017). https://doi.org/10.1016/j.indcrop.2017.01.042

    Article  CAS  Google Scholar 

  14. H. Guo, Q. Yuan, Y. Fu, W. Liu, Y.H. Su, H. Liu, C.Y. Wu, L. Zhao, Q. Zhang, D.R. Lin, H. Chen, W. Qin, D.T. Wu, Polymers 11(2), 215 (2019). https://doi.org/10.3390/polym11020215

    Article  CAS  PubMed Central  Google Scholar 

  15. H. Sun, C. Li, Y. Ni, L. Yao, H. Jiang, X. Ren, Y. Fu, C. Zhao, Carbohydr. Polym. 206, 557–564 (2019). https://doi.org/10.1016/j.carbpol.2018.11.010

    Article  CAS  PubMed  Google Scholar 

  16. S.Y. Xu, X.Q. Chen, Y. Liu, K.L. Cheong, Int. J. Biol. Macromol. 152, 748–756 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.305

    Article  CAS  PubMed  Google Scholar 

  17. Y.J. Cho, A.T. Getachew, P.S. Saravana, B.S. Chun, Bioact. Carbohydr. Diet. Fibre 18, 100179 (2019). https://doi.org/10.1016/j.bcdf.2019.100179

    Article  CAS  Google Scholar 

  18. A. Zhang, J. Deng, X. Liu, P. He, L. He, F. Zhang, R.J. Linhardt, P. Sun, Int. J. Biol. Macromol. 113, 558–564 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.151

    Article  CAS  PubMed  Google Scholar 

  19. X. Li, L. Wang, Int. J. Biol. Macromol. 83, 270–276 (2016). https://doi.org/10.1016/j.ijbiomac.2015.11.060

    Article  CAS  PubMed  Google Scholar 

  20. H. Guo, M.X. Fu, Y.X. Zhao, H. Li, H.B. Li, D.T. Wu, R.Y. Gan, Foods 10(8), 1779 (2021). https://doi.org/10.3390/foods10081779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. X. Chen, G. Chen, Z. Wang, J. Kan, Int. J. Biol. Macromol. 151, 635–649 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.222

    Article  CAS  PubMed  Google Scholar 

  22. L. Wang, T. Li, F. Liu, D. Liu, Y. Xu, Y. Yang, Y. Zhao, H. Wei, Int. J. Biol. Macromol. 126, 846–856 (2019). https://doi.org/10.1016/j.ijbiomac.2018.12.232

    Article  CAS  PubMed  Google Scholar 

  23. S. Lin, H.-Y. Li, Z.-Y. Wang, X. Liu, Y. Yang, Z.-W. Cao, G. Du, L. Zhao, Q. Zhang, D.-T. Wu, W. Qin, Antioxidants 8(8), 266 (2019). https://doi.org/10.3390/antiox8080266

    Article  CAS  PubMed Central  Google Scholar 

  24. K.-L. Feng, L. Huang, D.-T. Wu, F. Li, R.-Y. Gan, W. Qin, L. Zou, J. Food Meas. Charact. (2022). https://doi.org/10.1007/s11694-021-01256-3

    Article  Google Scholar 

  25. D.-T. Wu, Y. He, M.-X. Fu, R.-Y. Gan, Y.-C. Hu, L.-X. Peng, G. Zhao, L. Zou, Food Hydrocoll. 122, 107085 (2022). https://doi.org/10.1016/j.foodhyd.2021.107085

    Article  CAS  Google Scholar 

  26. D.-T. Wu, K.-L. Feng, L. Huang, R.-Y. Gan, Y.-C. Hu, L. Zou, Foods 10(10), 2330 (2021). https://doi.org/10.3390/foods10102330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. M.A. Chaouch, J. Hafsa, D.L. Cerf, Int. J. Food. Sci. Technol. 51(4), 929–937 (2016). https://doi.org/10.1111/ijfs.13055

    Article  CAS  Google Scholar 

  28. Y. Fu, K.L. Feng, S.Y. Wei, X.R. Xiang, Y. Ding, H.Y. Li, L. Zhao, W. Qin, R.Y. Gan, D.T. Wu, Int. J. Biol. Macromol. 145, 611–619 (2020). https://doi.org/10.1016/j.ijbiomac.2019.12.226

    Article  CAS  PubMed  Google Scholar 

  29. D.-T. Wu, Y. He, M.-X. Fu, R.-Y. Gan, Y.-C. Hu, L. Zou, Foods 10(10), 2322 (2021). https://doi.org/10.3390/foods10102322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. D.-T. Wu, Y.-X. Zhao, H. Guo, R.-Y. Gan, L.-X. Peng, G. Zhao, L. Zou, Polymers 13(14), 2357 (2021). https://doi.org/10.3390/polym13142357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. H.-Y.-Y. Yao, J.-Q. Wang, J.-Y. Yin, S.-P. Nie, M.-Y. Xie, Food Res. Int. 143, 110290 (2021). https://doi.org/10.1016/j.foodres.2021.110290

    Article  CAS  PubMed  Google Scholar 

  32. J.-H. Xie, M.-L. Jin, G.A. Morris, X.-Q. Zha, H.-Q. Chen, Y. Yi, J.-E. Li, Z.-J. Wang, J. Gao, S.-P. Nie, P. Shang, M.-Y. Xie, Crit. Rev. Food. Sci. Nutr. 56(sup1), S60–S84 (2016). https://doi.org/10.1080/10408398.2015.1069255

    Article  CAS  PubMed  Google Scholar 

  33. J.K. Yan, Z.C. Ding, X. Gao, Y.Y. Wang, Y. Yang, D. Wu, H.N. Zhang, Carbohydr. Polym. 193, 373–382 (2018). https://doi.org/10.1016/j.carbpol.2018.04.019

    Article  CAS  PubMed  Google Scholar 

  34. J. Liu, X. Wang, H. Yong, J. Kan, C. Jin, Int. J. Biol. Macromol. 116, 1011–1025 (2018). https://doi.org/10.1016/j.ijbiomac.2018.05.149

    Article  CAS  PubMed  Google Scholar 

  35. R. Zhu, X. Zhang, Y. Wang, L. Zhang, C. Wang, F. Hu, C. Ning, G. Chen, Food Chem. 286, 129–135 (2019). https://doi.org/10.1016/j.foodchem.2019.01.215

    Article  CAS  PubMed  Google Scholar 

  36. S. Liping, S. Xuejiao, Z. Yongliang, Int. J. Biol. Macromol. 92, 607–614 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.014

    Article  CAS  PubMed  Google Scholar 

  37. L.-S. Zhang, X. Wang, L.-L. Dong, Food Chem. 124(1), 183–187 (2011). https://doi.org/10.1016/j.foodchem.2010.06.006

    Article  CAS  Google Scholar 

  38. R. Zhu, X. Zhang, Y. Wang, L. Zhang, J. Zhao, G. Chen, J. Fan, Y. Jia, F. Yan, C. Ning, Carbohydr. Polym. 210, 73–84 (2019). https://doi.org/10.1016/j.carbpol.2019.01.037

    Article  CAS  PubMed  Google Scholar 

  39. C. Chen, P.P. Wang, Q. Huang, L.J. You, R.H. Liu, M.M. Zhao, X. Fu, Z.G. Luo, Food. Funct. 10(6), 3684–3695 (2019). https://doi.org/10.1039/c9fo00026g

    Article  CAS  PubMed  Google Scholar 

  40. X. Fu, H. Yang, C. Ma, X. Li, D. Li, Y. Yang, Y. Xu, L. Wang, Int. J. Biol. Macromol. 163, 414–422 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.267

    Article  CAS  PubMed  Google Scholar 

  41. Y. Deng, L. Huang, C. Zhang, P. Xie, J. Cheng, X. Wang, L. Liu, Int. J. Biol. Macromol. 153, 755–766 (2020). https://doi.org/10.1016/j.ijbiomac.2020.03.057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Foundation of Chengdu University (No. 2081921047), and the opening fund of the State Key Laboratory of Quality Research in Chinese Medicine, University of Macau (No. QRCM-OP21001).

Author information

Authors and Affiliations

Authors

Contributions

DTW: Conceptualization, Funding acquisition, Data curation, Formal analysis, Supervision, Writing-original draft; FL: Formal analysis, Investigation, Methodology; KLF: Formal analysis, Investigation, Validation; YCH, Resources, Formal analysis; RYG: Resources, Formal analysis; LZ: Formal analysis, Supervision, Writing-review & editing.

Corresponding authors

Correspondence to Ding-Tao Wu or Liang Zou.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, DT., Li, F., Feng, KL. et al. A comparison on the physicochemical characteristics and biological functions of polysaccharides extracted from Taraxacum mongolicum by different extraction technologies. Food Measure 16, 3182–3195 (2022). https://doi.org/10.1007/s11694-022-01439-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01439-6

Keywords

Navigation