Skip to main content
Log in

Amino acid profile, phytochemical composition and antimicrobial activities of edible tropical bolete mushroom (Phlebopus colossus (R. Heim) Singer)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The study aimed to determine amino acid and some minerals and vitamins, and to examine phenolic compounds and antimicrobial activity of edible tropical bolete (Phlebopus colossus (R. Heim) Singer) fruiting bodies as affected by different extraction solvents. Glutamic and aspartic acids were found as predominant amino acids (11.21–13.72% of total amino acids) in P. colossus. A high concentration of potassium (3569 mg/100 g) was observed in this bolete sample with a potential source of riboflavin (0.83 mg/100 g) and a trace of thiamine. The P. colossus extracts consisted of gallic acid, resorcinol, catechol, ellagic acid, vanillin, acetyl salicylic acid, benzoic acid, salicylic acid, and quercetin. The methanol and ethanolic extracts had more efficient to release these abundant phenolic compounds than acetonic extract. Interestingly, ellagic acid was found to be the main constituents of this fresh mushroom extract (74.68–82.94%), while the freeze-dried mushroom extract contained acetyl salicylic acid as the main component (47.58–54.27%), followed by ellagic acid (27.42–31.18%). The bolete mushroom extract tended to inhibit some pathogenic organisms, such as Bacillus cereus and Candida albicans. Therefore, the P. colossus mushroom could be further used for dietary supplement and pharmaceutical purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author.

References

  1. H. Lewandowska, M. Kalinowska, W. Lewandowski, T.M. Stępkowski, K. Brzóska, J Nutr Biochem (2016). https://doi.org/10.1016/j.jnutbio.2015.11.006

    Article  PubMed  Google Scholar 

  2. M.N. Laus, N.A.D. Benedetto, R. Caporizzi, D. Tozzi, M. Soccio, L. Giuzio, P.D. Vita, Z. Flagella, D. Pastore, Plant Food Hum Nutr (2015). https://doi.org/10.1007/s11130-015-0483-8

    Article  Google Scholar 

  3. F. Shahidi, J. Yeo, Molecules (2016). https://doi.org/10.3390/molecules21091216

    Article  PubMed  PubMed Central  Google Scholar 

  4. A. Ghasemzadeh, H.Z.E. Jaafar, A. Rahmat, J Med Plant Res 5, 1147 (2011)

    CAS  Google Scholar 

  5. G. Mradu, S. Saumyakanti, M. Sohini, Int J Pharmacognosy and Phytochem Res 4, 162 (2012)

    Google Scholar 

  6. P. Kalač, Food Chem (2009). https://doi.org/10.1016/j.foodchem.2008.07.077

    Article  Google Scholar 

  7. M. Kosanić, B. Ranković, M. Dašić, Bulg J Agric Sci 19, 1040 (2013)

    Google Scholar 

  8. W. Liaotrakoon, V. Liaotrakoon, Food Sci Technol (2018). https://doi.org/10.1590/1678-457x.34116

    Article  Google Scholar 

  9. S. Seehanan, V. Petcharat, J Agric Sci Technol 4, 109 (2008)

    Google Scholar 

  10. D. Wang, S.Q. Sun, W.Z. Wu, S.L. Yang, J.M. Tan, Carbohydr Polym (2014). https://doi.org/10.1016/j.carbpol.2013.12.085

    Article  PubMed  PubMed Central  Google Scholar 

  11. P. Manzi, S. Marconi, A. Aguzzi, L. Pizzoferrato, Food Chem (2004). https://doi.org/10.1016/s0308-8146(03)00202-4

    Article  Google Scholar 

  12. S.Y. Tsai, H.L. Tsai, J.L. Mau, LWT (2007). https://doi.org/10.1016/j.lwt.2006.10.001

    Article  Google Scholar 

  13. E. Vamanu, S. Nita, Biomed Res Int (2013). https://doi.org/10.1155/2013/313905

    Article  PubMed  PubMed Central  Google Scholar 

  14. P. Herbert, P. Barros, N. Ratola, A. Alves, J Food Sci (2000). https://doi.org/10.1111/j.1365-2621.2000.tb10251.x

    Article  Google Scholar 

  15. AOAC, Association of Official Analytical Chemists International. Official Methods of Analysis 21st ed (Gaithersburg, Maryland, 2019)

  16. K.A. Kouassi, E.J.P. Kouadio, K.M. Djè, A.E. Dué, L.P. Kouamé, J Agric Chem Environ (2016). https://doi.org/10.4236/jacen.2016.52008

    Article  Google Scholar 

  17. C. Jinshui, X. Qun, L. Lina, J. Rohrer, Thermo Fisher Scientific Application Note 1077, 1 (2016)

    Google Scholar 

  18. B. Ribeiro, P.B. Andrade, B.M. Silva, P. Baptista, R.M. Seabra, P. Valentã, J Agric Food (2008). https://doi.org/10.1021/jf802076p

    Article  Google Scholar 

  19. L. Sun, Q. Liu, C. Bao, J. Fan, Molecules (2017). https://doi.org/10.3390/molecules22030350

    Article  PubMed  PubMed Central  Google Scholar 

  20. N. Rotzoll, A. Dunkel, T. Hofmann, J Agric Food Chem (2006). https://doi.org/10.1021/jf053131y

    Article  PubMed  Google Scholar 

  21. Y.L. Zhuang, L.P. Sun, X. Zhao, J.F. Wang, H. Hou, B.F. Li, J Sci Food Agric (2009). https://doi.org/10.1002/jsfa.3645

    Article  Google Scholar 

  22. R.P.Z. Furlani, H.T. Godoy, Food Chem (2008). https://doi.org/10.1016/j.foodchem.2007.06.007

    Article  Google Scholar 

  23. A. Halee, J Microbiol Biotechnol Food Sci (2018). https://doi.org/10.15414/jmbfs.2018.8.2.765-769

    Article  Google Scholar 

  24. M. Pinelo, M. Rubilar, J. Sineiro, M.J. Núñez, Food Chem (2004). https://doi.org/10.1016/j.foodchem.2003.06.020

    Article  Google Scholar 

  25. J. Yu, M. Ahmedna, I. Goktepe, Food Chem (2005). https://doi.org/10.1016/j.foodchem.2004.03.048

    Article  Google Scholar 

  26. F. Arab, I. Alemzadeh, V. Maghsoudi, Sci Iran (2011). https://doi.org/10.1016/j.scient.2011.09.014

    Article  Google Scholar 

  27. S.N. Lou, Y.S. Lin, Y.S. Hsu, E.M. Chiu, C.T. Ho, Food Chem (2014). https://doi.org/10.1016/j.foodchem.2014.04.009

    Article  PubMed  Google Scholar 

  28. P. Randjelović, S. Veljković, N. Stojiljković, D. Sokolović, I. Ilić, D. Laketić, D. Randjelović, N. Randjelović, Acta Fac Medicae Naissensis (2015). https://doi.org/10.1515/afmnai-2015-0026

    Article  Google Scholar 

  29. M. Alagawany, M.R. Farag, M.E. Abd El-Hack, K. Dhama, J. Fowler, Worlds Poult Sci J (2017). https://doi.org/10.1017/s0043933917000253

    Article  Google Scholar 

  30. Y. Wang, F. Ren, B. Li, Z. Song, P. Chen, L. Ouyang, J Cancer (2019). https://doi.org/10.7150/jca.29738

    Article  PubMed  PubMed Central  Google Scholar 

  31. I.A. Sheikh, D. Vyas, M.A. Ganaie, K. Dehariya, V. Singh, Int J Pharm Pharm Sci 6, 679 (2014)

    CAS  Google Scholar 

  32. L. Barros, M. Dueñas, I.C.F.R. Ferreira, P. Baptista, C. Santos-Buelga, Food Chem Toxicol (2009). https://doi.org/10.1016/j.fct.2009.01.039

    Article  PubMed  Google Scholar 

  33. A. Dasgupta, A.K. Dutta, A. Halder, K. Acharya, J Biol Act Prod Nat (2015). https://doi.org/10.1080/22311866.2015.1137490

    Article  Google Scholar 

  34. N. Kalogeropoulos, A.E. Yanni, G. Koutrotsios, M. Aloupi, Food Chem Toxicol (2013). https://doi.org/10.1016/j.fct.2013.01.010

    Article  PubMed  Google Scholar 

  35. P. Valentão, P.B. Andrade, J. Rangel, B. Ribeiro, B.M. Silva, P. Baptista, R.M. Seabra, J Agric Food Chem (2005). https://doi.org/10.1021/jf0580263

    Article  PubMed  Google Scholar 

  36. L. Butkhup, W. Samappito, S. Jorjong, Food Sci Biotechnol (2018). https://doi.org/10.1007/s10068-017-0237-5

    Article  PubMed  Google Scholar 

  37. G. Gebreyohannes, A. Nyerere, C. Bii, D.B. Sbhatu, Evid Based Complement Alternat Med (2019). https://doi.org/10.1155/2019/6212673

    Article  PubMed  PubMed Central  Google Scholar 

  38. F. Pinu, S. Villas-Boas, R. Aggio, Metabolites (2017). https://doi.org/10.3390/metabo7040053

    Article  PubMed  PubMed Central  Google Scholar 

  39. A.B. Iwalokun, A.U. Usen, A.A. Otunba, K.D. Olukoya, Afr J Biotechnol (2007). https://doi.org/10.5897/ajb2007.000-2254

    Article  Google Scholar 

  40. V. Farkaš, Folia Microbiol (2003). https://doi.org/10.1007/bf02931327

    Article  Google Scholar 

  41. J.V. Heijenoort, Glycobiology (2001). https://doi.org/10.1093/glycob/11.3.25r

    Article  PubMed  Google Scholar 

  42. A. Srikram, N. Phalakhun, Khon Kaen agriculture journal 47, 1639 (2019)

    Google Scholar 

  43. M. Kosanić, B. Ranković, M. Dašić, J Pharm Res 11, 1095 (2012)

    Google Scholar 

Download references

Acknowledgements

This work was funded by National Research Council of Thailand, and Rajamangala University of Technology Suvarnabhumi, Thailand.

Funding

National Research Council of Thailand, and Rajamangala University of Technology Suvarnabhumi, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Liaotrakoon.

Ethics declarations

Conflict of interest

All the authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liaotrakoon, W., Liaotrakoon, V. Amino acid profile, phytochemical composition and antimicrobial activities of edible tropical bolete mushroom (Phlebopus colossus (R. Heim) Singer). Food Measure 16, 1967–1973 (2022). https://doi.org/10.1007/s11694-022-01331-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01331-3

Keywords

Navigation