Skip to main content
Log in

Utilization in situ of biodegradable films produced with chitosan, and functionalized with ε-poly-l-lysine: an effective approach for super antibacterial application

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In this study, the chitosan (1% w/v) was hydrated in an aqueous solution of glacial acetic acid (1% w/v) by using a magnetic stirrer and mixed with glycerol (0.75% v/v), as a plasticizer. The four types of chitosan films were fabricated by adding 1.5% cinnamaldehyde and 0.05% ε-poly-l-lysine, and the mechanical, physical and antibacterial properties of the treatments were determined. Mechanical results indicated that the addition of cinnamaldehyde significantly increased the tensile strength and decreased the elongation at break. Moreover, the addition of cinnamaldehyde increased the thickness and decreased water solubility, moisture and water vapor permeability. FT-IR showed the formation of Schiff base and hydrogen bonds between the functional groups of the components, which improved the mechanical and physical properties of the treatments. Changes in the surface of the films were evaluated by SEM images. Further, the antimicrobial activity of the films containing cinnamaldehyde and ε-poly-l-lysine was confirmed against gram-negative bacteria Escherichia coli and Salmonella typhimurium and gram-positive Staphylococcus aureus and Bacillus subtilis. Based on the results, the films containing cinnamaldehyde and ε-poly-l-lysine can be used as the functional packaging for food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.C. Heller, S.E.M. Selke, G.A. Keoleian, Mapping the influence of food waste in food packaging environmental performance assessments. J. Ind. Ecol. 23(2), 480–495 (2018). https://doi.org/10.1111/jiec.12743

    Article  CAS  Google Scholar 

  2. D. Alves, C. Brandão, V. Manuella, F. Vidal, R. Leitão, F. Karine, J. Moreira, M. Moreira, L. Coelho, B. Souza, Chitosan-based edible films produced from Crab-Uçá (Ucides cordatus) waste : physicochemical, mechanical and antimicrobial properties. J. Polym. Environ. 28(9), 694–706 (2020). https://doi.org/10.1007/s10924-020-01913-6

    Article  CAS  Google Scholar 

  3. M.B. Vásconez, S.K. Flores, C.A. Campos, J. Alvarado, L.N. Gerschenson, Antimicrobial activity and physical properties of chitosan-tapioca starch based edible films and coatings. Food Res. Int. 42(7), 762–769 (2009). https://doi.org/10.1016/j.foodres.2009.02.026

    Article  CAS  Google Scholar 

  4. S. Paidari, N. Zamindar, R. Tahergorabi, M. Kargar, S. Ezzati, S.H. Musavi, Edible coating and films as promising packaging: a mini review. J. Food Meas. Charact. 15, 4205–4214 (2021). https://doi.org/10.1007/s11694-021-00979-7

    Article  Google Scholar 

  5. S. Valizadeh, M. Naseri, S. Babaei, S.M.H. Hosseini, Shelf life extension of fish patty using biopolymer-coated active paper sheets. Food Packag. Shelf Life. 26, 100603 (2020). https://doi.org/10.1016/j.fpsl.2020.100603

    Article  Google Scholar 

  6. N. Oladzadabbasabadi, A.M. Nafchi, F. Ariffin, M.J.O. Wijekoon, A.A. Al-Hassan, M.A. Dheyab, M. Ghasemlou, Recent advances in extraction, modification, and application of chitosan in packaging industry. Carbohydr. Polym. 277, 118876 (2022). https://doi.org/10.1016/j.carbpol.2021.118876

    Article  CAS  PubMed  Google Scholar 

  7. N. Mahdavi Asl, H. Ahari, A.A.M. Moghanjoghi, S. Paidari, Assessment of nanochitosan packaging containing silver NPs on improving the shelf life of caviar (Acipenser persicus) and evaluation of nanoparticles migration. J. Food Meas. Charact. 15(6), 5078–5086 (2021). https://doi.org/10.1007/s11694-021-01082-7

    Article  Google Scholar 

  8. A. Mehdizadeh, S. Shahidi, N. Shariatifar, M. Shiran, A. Ghorbani-HasanSaraei, Evaluation of chitosan-zein coating containing free and nano-encapsulated Pulicaria gnaphalodes (Vent.) Boiss. extract on quality attributes of rainbow trout. J. Aquat. Food Prod. Technol. 30, 62–75 (2021). https://doi.org/10.1080/10498850.2020.1855688

    Article  CAS  Google Scholar 

  9. M.M. Marvizadeh, A. Tajik, V. Moosavian, N. Oladzadabbasabadi, A. Mohammadi Nafchi, Fabrication of cassava starch/mentha piperita essential oil biodegradable film with enhanced antibacterial properties. J. Chem. Health Risks 11(1), 23–29 (2021). https://doi.org/10.22034/jchr.2020.1900584.1135

    Article  CAS  Google Scholar 

  10. S.M. Ojagh, M. Rezaei, S.H. Razavi, S.M.H. Hosseini, Development and evaluation of a novel biodegradable film made from chitosan and cinnamon essential oil with low affinity toward water. Food Chem. 122(1), 161–166 (2010). https://doi.org/10.1016/j.foodchem.2010.02.033

    Article  CAS  Google Scholar 

  11. R.R. Gadkari, S. Suwalka, M.R. Yogi, W. Ali, A. Das, R. Alagirusamy, Green Synthesis of chitosan-cinnamaldehyde cross-linked nanoparticles: characterization and antibacterial activity. Carbohydr. Polym. 226, 115298 (2019). https://doi.org/10.1016/j.carbpol.2019.115298

    Article  CAS  PubMed  Google Scholar 

  12. S.N. Ashakirin, M. Tripathy, U.K. Patil, A.B.A. Majeed, Chemistry and bioactivity of cinnamaldehyde: a natural molecule of medicinal importance. Int. J. Pharm. Sci. Res. 8(6), 2333–2340 (2017). https://doi.org/10.13040/IJPSR.0975-8232.8(6).2333-40

    Article  CAS  Google Scholar 

  13. A.O. Gill, R.A. Holley, Mechanisms of bactericidal action of Cinnamaldehyde against Listeria monocytogenes and of Eugenol against L. monocytogenes and Lactobacillus sakei. Appl. Environ. Microbiol. 70(10), 5750–5755 (2004). https://doi.org/10.1128/AEM.70.10.5750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. L.S.M. Ooi, Y. Li, S. Kam, H. Wang, E.Y.L. Wong, V.E.C. Ooi, antimicrobial activities of cinnamon oil and Cinnamaldehyde from the Chinese medicinal herb Cinnamomum cassia Blume. Am. J. Chin. Med. 34(3), 511–522 (2006). https://doi.org/10.1142/S0192415X06004041

    Article  CAS  PubMed  Google Scholar 

  15. F. Liu, Y. Liu, Z. Sun, D. Wang, H. Wu, L. Du, D. Wang, Preparation and antibacterial properties of ε-polylysine-containing gelatin/chitosan nanofiber films. Int. J. Biol. Macromol. 164, 3376–3387 (2020). https://doi.org/10.1016/j.ijbiomac.2020.08.152

    Article  CAS  PubMed  Google Scholar 

  16. R. Ye, H. Xu, C. Wan, S. Peng, L. Wang, H. Xu, Z.P. Aguilar, Y. Xiong, Z. Zeng, H. Wei, Biochemical and biophysical research communications antibacterial activity and mechanism of action of ε-poly-l-lysine. Biochem. Biophys. Res. Commun. 439, 148–153 (2013). https://doi.org/10.1016/j.bbrc.2013.08.001

    Article  CAS  PubMed  Google Scholar 

  17. I.L. Shih, M.H. Shen, Y.T. Van, Microbial synthesis of poly(ε-lysine) and its various applications. Bioresour. Technol. 97(9), 1148–1159 (2006). https://doi.org/10.1016/j.biortech.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  18. R. Razavi, H. Tajik, M. Moradi, R. Molaei, P. Ezati, Antimicrobial, microscopic and spectroscopic properties of cellulose paper coated with chitosan sol-gel solution formulated by epsilon-poly-l-lysine and its application in active food packaging. Carbohydr Res. 489, 107912 (2020). https://doi.org/10.1016/j.carres.2020.107912

    Article  CAS  PubMed  Google Scholar 

  19. X. Shen, M. Zhang, K. Fan, Z. Guo, Effects of ε-polylysine/chitosan composite coating and pressurized argon in combination with MAP on quality and microorganisms of fresh-cut potatoes. Food Bioprocess Technol. 13(1), 145–158 (2020). https://doi.org/10.1007/s11947-019-02388-7

    Article  CAS  Google Scholar 

  20. F. Nowzari, B. Shábanpour, S.M. Ojagh, Comparison of chitosan-gelatin composite and bilayer coating and film effect on the quality of refrigerated rainbow trout. Food Chem. 141(3), 1667–1672 (2013). https://doi.org/10.1016/j.foodchem.2013.03.022

    Article  CAS  PubMed  Google Scholar 

  21. S. Valizadeh, M. Naseri, S. Babaei, S.M.H. Hosseini, A. Imani, Development of bioactive composite films from chitosan and carboxymethyl cellulose using glutaraldehyde, cinnamon essential oil and oleic acid. Int. J. Biol. Macromol. 134, 604–612 (2019). https://doi.org/10.1016/j.ijbiomac.2019.05.071

    Article  CAS  PubMed  Google Scholar 

  22. L.F. Ballesteros, M.A. Cerqueira, J.A. Teixeira, S.I. Mussatto, Production and physicochemical properties of carboxymethyl cellulose films enriched with spent coffee grounds polysaccharides. Int. J. Biol. Macromol. 106, 647–655 (2018). https://doi.org/10.1016/j.ijbiomac.2017.08.060

    Article  CAS  PubMed  Google Scholar 

  23. Z. Mousavi, M. Naseri, S. Babaei, S.M.H. Hosseini, S.S. Shekarforoush, The effect of cross-linker type on structural, antimicrobial and controlled release properties of fish gelatin-chitosan composite films incorporated with ε-poly-l-lysine. Int. J. Biol. Macromol. 183, 1743–1752 (2021). https://doi.org/10.1016/j.ijbiomac.2021.05.159

    Article  CAS  PubMed  Google Scholar 

  24. N.A. Azlim, A. Mohammadi Nafchi, N. Oladzadabbasabadi, F. Ariffin, P. Ghalambor, S. Jafarzadeh, A.A. Al-Hassan, Fabrication and characterization of a pH-sensitive intelligent film incorporating dragon fruit skin extract. Food Sci. Nutr. (2021). https://doi.org/10.1002/fsn3.2680

    Article  PubMed  PubMed Central  Google Scholar 

  25. L. Deng, X. Li, K. Miao, X. Mao, M. Han, D. Li, C. Mu, L. Ge, Development of disulfide bond crosslinked gelatin/ε-polylysine active edible film with antibacterial and antioxidant activities. Food Bioprocess Technol. 13(2), 577–588 (2020). https://doi.org/10.1007/s11947-020-02420-1

    Article  CAS  Google Scholar 

  26. F. Xue, Y. Chungu, C. Li, B. Adhikari, Encapsulation of essential oil in emulsion based edible films prepared by soy protein isolate-gum acacia conjugates. Food Hydrocoll. 96, 178–189 (2019). https://doi.org/10.1016/j.foodhyd.2019.05.014

    Article  CAS  Google Scholar 

  27. S.F. Hosseini, J. Ghaderi, M.C. Gómez-Guillén, trans-Cinnamaldehyde-doped quadripartite biopolymeric films : rheological behavior of film-forming solutions and biofunctional performance of films. Food Hydrocoll. 112, 106339 (2021). https://doi.org/10.1016/j.foodhyd.2020.106339

    Article  CAS  Google Scholar 

  28. N. Matan, H. Rimkeeree, A.J. Mawson, P. Chompreeda, V. Haruthaithanasan, M. Parker, Antimicrobial activity of cinnamon and clove oils under modified atmosphere conditions. Int. J. Food Microbiol. 107, 180–185 (2006). https://doi.org/10.1016/j.ijfoodmicro.2005.07.007

    Article  CAS  PubMed  Google Scholar 

  29. S. Park, Y. Zhao, Incorporation of a high concentration of mineral or vitamin into chitosan-based films. J. Agric. Food Chem. 52, 1933–1939 (2004). https://doi.org/10.1021/jf034612p

    Article  CAS  PubMed  Google Scholar 

  30. S.S. Narasagoudr, V.G. Hegde, V.N. Vanjeri, R.B. Chougale, S.P. Masti, Ethyl vanillin incorporated chitosan/poly(vinyl alcohol) active films for food packaging applications. Carbohydr. Polym. 236, 116049 (2020). https://doi.org/10.1016/j.carbpol.2020.116049

    Article  CAS  PubMed  Google Scholar 

  31. H. Chen, X. Hu, E. Chen, S. Wu, D.J. McClements, S. Liu, B. Li, Y. Li, Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocoll. 61, 662–671 (2016). https://doi.org/10.1016/j.foodhyd.2016.06.034

    Article  CAS  Google Scholar 

  32. Y. Wang, F. Liu, C. Liang, F. Yuan, Y. Gao, Effect of Maillard reaction products on the physical and antimicrobial properties of edible films based on ε-polylysine and chitosan. J. Sci. Food Agric. 94(14), 2986–2991 (2014). https://doi.org/10.1002/jsfa.6644

    Article  CAS  PubMed  Google Scholar 

  33. J. Wang, Z. Lian, H. Wang, X. Jin, Y. Liu, Synthesis and antimicrobial activity of schiff base of chitosan and acylated chitosan. J. Appl. Polym. Sci. 123, 3242–3247 (2012). https://doi.org/10.1002/app

    Article  CAS  Google Scholar 

  34. E. Kenawy, A.M. Omer, T.M. Tamer, M.A. Elmeligy, M.S.M. Eldin, Fabrication of biodegradable gelatin/chitosan/cinnamaldehyde crosslinked membranes for antibacterial wound dressing applications. Int. J. Biol. Macromol. 139, 440–448 (2019). https://doi.org/10.1016/j.ijbiomac.2019.07.191

    Article  CAS  PubMed  Google Scholar 

  35. C. Zhang, Z. Wang, Y. Li, Y. Yang, X. Ju, R. He, The preparation and physiochemical characterization of rapeseed protein hydrolysate-chitosan composite films. Food Chem. 272, 694–701 (2019). https://doi.org/10.1016/j.foodchem.2018.08.097

    Article  CAS  PubMed  Google Scholar 

  36. M. Pereda, A.G. Ponce, N.E. Marcovich, R.A. Ruseckaite, J.F. Martucci, Chitosan-gelatin composites and bi-layer films with potential antimicrobial activity. Food Hydrocoll. 25(5), 1372–1381 (2011). https://doi.org/10.1016/j.foodhyd.2011.01.001

    Article  CAS  Google Scholar 

  37. C. Wu, J. Sun, Y. Lu, T. Wu, J. Pang, Y. Hu, In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol. 132, 385–392 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.133

    Article  CAS  PubMed  Google Scholar 

  38. J. Xu, R. Wei, Z. Jia, R. Song, Characteristics and bioactive functions of chitosan/gelatin-based film incorporated with ε-polylysine and astaxanthin extracts derived from by-products of shrimp (Litopenaeus vannamei). Food Hydrocoll. 100, 105436–105446 (2020). https://doi.org/10.1016/j.foodhyd.2019.105436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This Project funded by Shiraz University. Also, the authors thank the staff of the Fisheries Laboratory and the Food Science and Technology Laboratory of Shiraz University (Grant No. 98GCU1M340880).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sedigheh Babaei or Mahmood Naseri.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mousavi, Z., Babaei, S., Naseri, M. et al. Utilization in situ of biodegradable films produced with chitosan, and functionalized with ε-poly-l-lysine: an effective approach for super antibacterial application. Food Measure 16, 1416–1425 (2022). https://doi.org/10.1007/s11694-022-01297-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-022-01297-2

Keyword

Navigation