Skip to main content
Log in

Effect of blanching and drying methods of spinach on the physicochemical properties and cooking quality of enriched pasta

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this study was to evaluate the effect of blanching and spinach drying methods on the physicochemical and cooking properties of enriched pasta. Blanched and unblanched spinach were subjected to fixed bed drying and foam mat drying and used to enrich the pasta. The pasta enriched with blanched spinach showed more desirable physicochemical properties, for both drying methods. The blanching associated with fixed bed drying resulted in a greener enriched pasta with a higher total chlorophyll content (9.66 mg/100 g d.b.). On the other hand, foam mat drying contributed to less degradation of total carotenoids and antioxidant activity (ABTS and DPPH methods), with values of 798.01 µg of lutein/100 g d.b., 7.14 µM Trolox/g d.b. and 84.81% RSC, respectively. The spinach flours used for enrichment did not significantly affect the technological properties of the pasta. Spinach blanched and dried in a foam mat to obtain flour represents a potential alternative for enriching the pasta, since this processing contributed to the greater preservation of the product's compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. M. Foschia, D. Peressini, A. Sensidoni, C.S. Brennan, J. Cereal Sci. 58, 216 (2013)

    Article  CAS  Google Scholar 

  2. A. Sobota, A. Wirkijowska, P. Zarzycki, Int. J. Food Sci. Technol. 55, 2677 (2020)

    Article  CAS  Google Scholar 

  3. W.C. Vimercati, L.L. Macedo, C.S. da Araújo, A.M. MaradiniFilho, S.H. Saraiva, L.J.Q. Teixeira, J. Food Process. Preserv. 1, e14637 (2020)

    Google Scholar 

  4. J. Huai, X. Ye, Nutr. Cancer 73, 1322 (2020)

    Article  PubMed  Google Scholar 

  5. R. Rekhy, R. McConchie, Appetite 79, 113 (2014)

    Article  PubMed  Google Scholar 

  6. S. Chillo, J. Laverse, P.M. Falcone, A. Protopapa, M.A. Del Nobile, J. Cereal Sci. 47, 144 (2008)

    Article  Google Scholar 

  7. M. Foschia, D. Peressini, A. Sensidoni, M.A. Brennan, C.S. Brennan, LWT Food Sci. Technol. 61, 41 (2015)

    Article  CAS  Google Scholar 

  8. N.R. Galla, P.R. Pamidighantam, B. Karakala, M.R. Gurusiddaiah, S. Akula, Int. J. Gastron. Food Sci. 7, 20 (2017)

    Article  Google Scholar 

  9. W.C. Vimercati, C.S. da Araújo, L.L. Macedo, A.M. Maradini Filho, S.H. Saraiva, L.J.Q. Teixeira, J. Food Process Eng. 43, e13571 (2020)

    Article  CAS  Google Scholar 

  10. D.N. Yadav, M. Sharma, N. Chikara, T. Anand, S. Bansal, Agric. Res. 3, 263 (2014)

    Article  CAS  Google Scholar 

  11. Y. Ando, T. Okunishi, H. Okadome, Food Bioprocess Technol. 12, 1821 (2019)

    Article  CAS  Google Scholar 

  12. L.Z. Deng, A.S. Mujumdar, Q. Zhang, X.H. Yang, J. Wang, Z.A. Zheng, Z.J. Gao, H.W. Xiao, Crit. Rev. Food Sci. Nutr. 59, 1408 (2017)

    Article  PubMed  Google Scholar 

  13. Y. Sun, M. Zhang, A. Mujumdar, Food Eng. Rev. 11, 61 (2019)

    Article  Google Scholar 

  14. C.S. da Araújo, J.L.G. Corrêa, S. Dev, L.L. Macedo, W.C. Vimercati, C. de Rodrigues Oliveira, L.A.S. Pio, Dry. Technol. 38, 1 (2020)

    Article  Google Scholar 

  15. L.L. Macedo, W.C. Vimercati, C.S. da Araújo, S.H. Saraiva, L.J.Q. Teixeira, J. Food Process Eng. 1, e13451 (2020)

    Google Scholar 

  16. R.R. De Paula, W.C. Vimercati, C.S. da Araújo, L.L. Macedo, L.J.Q. Teixeira, S.H. Saraiva, J. Food Process. Preserv. 1, e14796 (2020)

    Google Scholar 

  17. W.A.M. McMinn, T.R.A. Magee, Trans. Inst. Chem. Eng. 77, 175 (1999)

    Article  Google Scholar 

  18. C. Miglio, E. Chiavaro, A. Visconti, V. Fogliano, N. Pellegrini, J. Agric. Food Chem. 56, 139 (2008)

    Article  CAS  PubMed  Google Scholar 

  19. C.S. da Araújo, L.L. Macedo, W.C. Vimercati, S.H. Saraiva, A.N. de Oliveira, L.J.Q. Teixeira, Braz. J. Food Technol. 20, 1 (2017)

    Article  Google Scholar 

  20. G. Özkan, S.E. Bilek, Food Chem. 176, 152 (2015)

    Article  PubMed  Google Scholar 

  21. D. Rodriguez, A guide to carotenoid analysis in foods (2001)

  22. R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med. 26, 1231 (1999)

    Article  CAS  PubMed  Google Scholar 

  23. IAL. Inst. São Paulo, Brazil (2008).

  24. AOAC, Assoc. Maryland, USA (2005).

  25. AACC, Assoc. St Paul, MN (1990).

  26. C.M. Tudoricǎ, V. Kuri, C.S. Brennan, J. Agric. Food Chem. 5, 347 (2002)

    Article  Google Scholar 

  27. G. Derringer, R. Suich, J. Qual. Technol. 12, 214 (1980)

    Article  Google Scholar 

  28. M. Aamir, M. Ovissipour, B. Rasco, J. Tang, S. Sablani, Int. J. Food Prop. 17, 2012 (2014)

    Article  CAS  Google Scholar 

  29. Z. Huang, Q. Zhou, W. Wu, J. Wan, A. Jiang, J. Food Process Eng. 42, e12991 (2019)

    Article  Google Scholar 

  30. H. Isleroglu, M. Sakin-Yilmazer, T. Kemerli-Kalbaran, A. Üren, F. Kaymak-Ertekin, Int. J. Food Prop. 20, 2456 (2017)

    Article  CAS  Google Scholar 

  31. E. Lee, H. Ahn, E. Choe, Food Sci. Biotechnol. 23, 1061 (2014)

    Article  CAS  Google Scholar 

  32. Y. Tao, M. Han, X. Gao, Y. Han, P.-L. Show, C. Liu, X. Ye, G. Xie, Ultrason. Sonochem. 53, 192 (2019)

    Article  CAS  PubMed  Google Scholar 

  33. A. Kaur, D. Kaur, D.P.S. Oberoi, B.S. Gill, D.S. Sogi, J. Food Process. Preserv. 32, 103 (2008)

    Article  CAS  Google Scholar 

  34. S.M. Oliveira, T.R.S. Brandão, C.L.M. Silva, Food Eng. Rev. 8, 134 (2016)

    Article  CAS  Google Scholar 

  35. D. Dutta, U. Chaudhuri, R. Chakraborty, Afr. J. Biotechnol. 4, 1510 (2011)

    Google Scholar 

  36. L. Ngamwonglumlert, S. Devahastin, N. Chiewchan, V. Raghavan, Compr. Rev. Food Sci. Food Saf. 19, 1 (2020)

    Article  Google Scholar 

  37. L. Priecina, D. Karklina, T. Kince, Innov. Food Sci. Emerg. Technol. 49, 192 (2018)

    Article  CAS  Google Scholar 

  38. D. Behsnilian, E. Mayer-Miebach, Food Control 73, 761 (2017)

    Article  CAS  Google Scholar 

  39. G. Addis, R. Baskaran, M. Raju, A. Ushadevi, Z. Asfaw, Z. Woldu, V. Baskaran, J. Food Process. Preserv. 33, 744 (2009)

    Article  CAS  Google Scholar 

  40. U.K.S. Khanam, S. Oba, E. Yanase, Y. Murakami, J. Funct. Foods 4, 979 (2012)

    Article  CAS  Google Scholar 

  41. A. Podsędek, LWT Food Sci. Technol. 40, 1 (2007)

    Article  Google Scholar 

  42. F. Al-juhaimi, K. Ghafoor, M.M. Özcan, M.H.A. Jahurul, E.E. Babiker, S. Jinap, F. Sahena, M.S. Sharifudin, I.S.M. Zaidul, J. Food Sci. Technol. 55, 3872 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. Kaiser, D.R. Kammerer, R. Carle, Food Chem. 140, 332 (2013)

    Article  CAS  PubMed  Google Scholar 

  44. O.S. Qadri, A.K. Srivastava, B. Yousuf, Crit. Rev. Food Sci. Nutr. 60, 1667 (2020)

    Article  PubMed  Google Scholar 

  45. J.M. Klang, S.T. Tene, L.G. Nguemguo Kalamo, G.T. Boungo, S.C. Ndomou Houketchang, H.A. KoholeFoffe, H.M. Womeni, Heliyon 5, e02982 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  46. H.-W. Xiao, Z. Pan, L.-Z. Deng, H.M. El-Mashad, X.-H. Yang, A.S. Mujumdar, Z.-J. Gao, Q. Zhang, Inf. Process. Agric. 4, 101 (2017)

    Google Scholar 

  47. S. Gupta, B.S. Gowri, A.J. Lakshmi, J. Prakash, J. Food Sci. Technol. 50, 918 (2013)

    Article  CAS  PubMed  Google Scholar 

  48. R.F. do Nascimento, M.H.G. Canteri, Hortic. Bras. 36, 461 (2018)

    Article  CAS  Google Scholar 

  49. C. Quarcoo, F.D.W. Manu, Food Process. Technol. 2, 164 (2016)

    Google Scholar 

  50. C. Severini, R. Giuliani, A. De Filippis, A. Derossi, T. De Pilli, J. Food Sci. Technol. 53, 501 (2016)

    Article  CAS  PubMed  Google Scholar 

  51. L. Xie, N. Nishijima, Y. Oda, A. Handa, K. Majumder, C. Xu, Y. Zhang, LWT Food Sci. Technol. 122, 1 (2020)

    Article  Google Scholar 

  52. V. Espinosa-Solis, P.B. Zamudio-Flores, J.M. Tirado-Gallegos, S. Ramírez-Mancinas, G.I. Olivas-Orozco, M. Espino-Díaz, M. Hernández-González, V.G. García-Cano, O. Sánchez-Ortíz, J.J. Buenrostro-Figueroa, R. Baeza-Jiménez, Foods 8, 299 (2019)

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

WCV designed the study, collected test data, interpreted the results and drafted the manuscript. LLM and CSA collected test data and interpreted the results. AMMF, SHS, LJQT, JLGC and MGM designed the study and review the manuscript.

Corresponding author

Correspondence to Wallaf Costa Vimercati.

Ethics declarations

Conflict of interest

The authors declare that there are no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vimercati, W.C., Macedo, L.L., da Silva Araújo, C. et al. Effect of blanching and drying methods of spinach on the physicochemical properties and cooking quality of enriched pasta. Food Measure 16, 137–144 (2022). https://doi.org/10.1007/s11694-021-01155-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01155-7

Keywords

Navigation