Skip to main content
Log in

Evaluation of PE/POE/PA6 blends containing silica and clay toward nano composite packaging film

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

In the present study, we investigate PE/POE/PA6 blends containing nano silica and clay, which is one of the most important synthetic polymers utilized in food packaging industry. Nanocomposite films including C0S0, C1S0.75, and C2S0.75 (C and S denoting nanoclay and nanosilica, respectively) were prepared via melt mixing method. Then, structural, mechanical, thermal, and morphological traits of the prepared films were evaluated. Analysis of variance (ANOVA) results for parameters including strain and energy in the tensile test, elasticity modulus, and work in penetration test were significant at 0.05% probability. X-ray diffraction (XRD) patterns showed that polymer mixing resulted in the removal of 2.5–3 pick and the tendency of 3.5–4.5 and 6.5–7.5 picks appear at lower angles, suggesting the layers openness and partly sheet structure of the nanoparticles. According to SEM micrographs, soil nanoparticle distribution is almost suitable and there is no accumulation at various fracture surface areas. Thermo gravimetric analysis (TGA) presented a relatively good thermos ability. The results of the Differential scanning calorimetry test in the nanocomposite packaging films showed that enthalpy (ΔHm and ΔHc) and crystallinity percentage in all nanocomposites with PA6 and LDPE polymeric components from C0S0, C1S0.75, and C2S0.75 nanocomposite films had a decreasing trend. Therefore, physical, mechanical, thermal and morphological properties of PE/POE/PA6 blends containing Nano silica and clay were improved and increasing storage life, which are important in economic, marketability, and exporting terms.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.Y. Huang, X. Li, W. Zhou, Trends Food Sci. Technol. 45(2), 187–199 (2015). https://doi.org/10.1016/j.tifs.2015.07.002

    Article  CAS  Google Scholar 

  2. H. Wei, Y. Yan Jun, L. Ning Tao, W. Li Bing, Application and safety assessment for nano-composite materials in food packaging. Chin. Sci. Bull. 56(12), 1216–1225 (2011). https://doi.org/10.1007/s11434-010-4326-6

    Article  Google Scholar 

  3. G. Gorrasi, V. Bugatti, L. Tammaro, L. Vertuccio, G. Vigliotta, V. Vittoria, Food Control 64, 10–16 (2016). https://doi.org/10.1016/j.foodcont.2015.12.002

    Article  CAS  Google Scholar 

  4. V. Siracusa, Chapter 7—Packaging material in the food industry, in Antimicrobial Food Packaging, ed. by J. Barros-Velázquez, (Academic Press, San Diego, 2016), pp. 95–106. https://doi.org/10.1016/B978-0-12-800723-5.00007-3

    Chapter  Google Scholar 

  5. D. Mousavian, A.M. Nafchi, L. Nouri, A. Abedinia, J. Food Meas. Charact. 2020, 1–9 (2020). https://doi.org/10.1007/s11694-020-00690-z

    Article  Google Scholar 

  6. A. Gopanna, K.P. Rajan, S.P. Thomas, M. Chavali, Materials for Biomedical Engineering (Elsevier, Amsterdam, 2019), pp. 175–216. https://doi.org/10.1016/B978-0-12-816874-5.00006-2

    Book  Google Scholar 

  7. S. Lange, T. Arroval, R. Saar, I. Kink, J. Aarik, A. Krumme, Polym.-Plast. Technol. Eng. 54, 301–304 (2015). https://doi.org/10.1080/03602559.2014.977426

    Article  CAS  Google Scholar 

  8. N. Bumbudsanpharoke, W. Lee, S. Ko, Polym. Compos. (2017). https://doi.org/10.1002/pc.24325

  9. F. Chivarc, E. Pollet, L. Averous, Mater. Sci. Eng. R Rep. 67, 1–17 (2009). https://doi.org/10.1016/j.mser.2009.09.002

    Article  CAS  Google Scholar 

  10. K. Soon, E.H. Jones, R.S. Rajeev, G. Menary, P.J. Martin, C.G. Armstrong, Polym. Eng. Sci. 52, 532–548 (2012). https://doi.org/10.1002/pen.22114

    Article  CAS  Google Scholar 

  11. E. Jamróz, G. Khachatryan, P. Kopel, L. Juszczak, A. Kawecka, P. Krzyściak, M. Kucharek, Carbohydr. Polym. 240, 116244 (2020). https://doi.org/10.1016/j.carbpol.2020.116244

    Article  CAS  PubMed  Google Scholar 

  12. T.V. Duncan, J. Colloid Interface Sci. 363(1), 1–24 (2011). https://doi.org/10.1016/j.jcis.2011.07.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. Sorrentino, G. Gorrasi, V. Vittoria, Trends Food Sci. Technol. 18(2), 84–95 (2007). https://doi.org/10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  14. A.M. Hezma, A. Rajeh, M.A. Mannaa, Colloids Surf. A Physicochem. Eng. Aspects 581, 123821 (2020). https://doi.org/10.1016/j.colsurfa.2019.123821

    Article  CAS  Google Scholar 

  15. H. Sepet, N. Tarakcioglu, R.D.K. Misra, J. Compos. Mater. 50, 3105–3116 (2016). https://doi.org/10.1177/0021998315615653

    Article  CAS  Google Scholar 

  16. G. Venkatesh, A. Deb, A. Karmarkar, S.S. Chauhan, Mater. Des. 37, 285–291 (2012). https://doi.org/10.1016/j.matdes.2011.12.034

    Article  CAS  Google Scholar 

  17. R.M. Meri, J. Zicans, R. Maksimovs, T. Ivanova, M. Kalnins, R. Berzina, G. Japins, Compos. Struct. 111, 453–458 (2014). https://doi.org/10.1016/j.compstruct.2014.01.017

    Article  Google Scholar 

  18. B. Akbari, R. Bagheri, Polym.-Plast. Technol. Eng. 53, 156–161 (2014). https://doi.org/10.1080/03602559.2013.843702

    Article  CAS  Google Scholar 

  19. N. Follain, B. Alexandre, C. Chappey, L. Colasse, P. Mederic, S. Marais, Compos. Sci. Technol. 136, 18–28 (2016). https://doi.org/10.1016/j.compscitech.2016.09.023

    Article  CAS  Google Scholar 

  20. H.M. Wilhelm, M.R. Sierakowski, G.P. Souza, F. Wypych, Carbohydr. Polym. 52(2), 101–110 (2003). https://doi.org/10.1016/S0144-8617(02)00239-4

    Article  CAS  Google Scholar 

  21. N.F. Magalhaes, C.T. Andrade, Carbohydr. Polym. 75, 712–718 (2009). https://doi.org/10.1016/j.carbpol.2008.09.020

    Article  CAS  Google Scholar 

  22. M.S. Islam, M.B. Ahmad, M. Hasan, S.A. Aziz, M. Jawaid, M.M. Haafiz, S.A. Zakaria, BioResources 10(1), 1394–1407 (2015) https://bioresources.cnr.ncsu.edu/issues/vol10-issue1/page/12/

    Article  Google Scholar 

  23. D. Adame, G. Beall, Appl. Clay Sci. 42(3–4), 545–552 (2009). https://doi.org/10.1016/j.clay.2008.03.005

    Article  CAS  Google Scholar 

  24. F.M. Yang, H.M. Li, F. Li, Z.H. Xin, L.Y. Zhao, Y.H. Zheng, Q.H. Hu, J. Food Sci. 75(3), C236–C240 (2010). https://doi.org/10.1111/j.1750-3841.2010.01520.x

    Article  CAS  PubMed  Google Scholar 

  25. M. Parvinzadeh, S. Moradian, A. Rashidi, M.E. Yazdanshena, Appl. Surf. Sci. 256, 2792–2802 (2010). https://doi.org/10.1016/j.apsusc.2009.11.030

    Article  CAS  Google Scholar 

  26. L.F. Wang, J.W. Rhim, Int. J. Biol. Macromol. 80, 460–468 (2015). https://doi.org/10.1016/j.ijbiomac.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  27. S.S. Ray, M. Okamoto, Prog. Polym. Sci. 28(11), 1539–1641 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002

    Article  CAS  Google Scholar 

  28. A. Hu, H. WandFu, Packag. Eng. 24, 22–24 (2003)

    CAS  Google Scholar 

  29. X. Li, W. Li, Y. Jiang, Y. Ding, J. Yun, T. Yao, P. Zhang, Int. J. Food Sci. Technol. 46, 1947–1955 (2011). https://doi.org/10.1111/j.1365-2621.2011.02706.x

    Article  CAS  Google Scholar 

  30. A. Emamifar, M. Kadivar, M. Shahedi, S. Soleimanianzad, Innov. Food Sci. Emerg. Technol. 11, 742–748 (2010). https://doi.org/10.1016/j.ifset.2010.06.003

    Article  CAS  Google Scholar 

  31. H. Barikloo, E. Ahmadi, Sci. Horticult. 240, 496–508 (2018). https://doi.org/10.1016/j.scienta.2018.06.012

    Article  CAS  Google Scholar 

  32. S. Hotta, D.R. Paul, Polymer 45, 7639–7654 (2004). https://doi.org/10.1016/j.compscitech.2007.03.007

    Article  CAS  Google Scholar 

  33. ASTM D638-14, Standard Test Method for Tensile Properties of Plastics (ASTM International, West Conshohocken, PA, 2014, www.astm.org). https://doi.org/10.1520/D0638-14

    Book  Google Scholar 

  34. ASTM F1306-16, Standard Test Method for Slow Rate Penetration Resistance of Flexible Barrier Films and Laminates (ASTM International, West Conshohocken, PA, 2016), www.astm.org). https://doi.org/10.1520/F1306-16

    Book  Google Scholar 

  35. S. Ahmadi, A.-J. Morshedi, S.A. Ashemi, J. Vinyl Addit. Technol. 16(2), 152–160 (2010). https://doi.org/10.1002/vnl.20223

    Article  CAS  Google Scholar 

  36. J.H. Koo, Polymer Nanocomposites: Processing, Characterization, and Applications, vol 272 (The McGraw-Hill Companies, Inc, New York, 2006)

    Google Scholar 

  37. D. Makwana, J. Castaño, R.S. Somani, H.C. Bajaj, Arab. J. Chem. 13(1), 3092–3099 (2020). https://doi.org/10.1016/j.arabjc.2018.08.017

    Article  CAS  Google Scholar 

  38. G. Mohammed, A.M. El Sayed, S. El-Gamal, J. Inorg. Organomet. Polym. 30, 1306–1319 (2020). https://doi.org/10.1007/s10904-019-01307-9

    Article  CAS  Google Scholar 

  39. M. Khutia, G.M. Joshi, J. Mater, Sci. Mater. Electron. 26(7), 5475–5488 (2015). https://doi.org/10.1007/s10854-015-3104-2

    Article  CAS  Google Scholar 

  40. J. Luecha, N. Sozer, J.L. Kokini, J. Mater. Sci. 45, 3529–3537 (2010). https://doi.org/10.1007/s10853-010-4395-6

    Article  CAS  Google Scholar 

  41. M. Farhoodi, S.M. Mousavi, R. Sotudeh-Gharebagh, Z. Emam-Djomeh, A. Oromiehie, Packag. Technol. Sci. 27(2), 161–168 (2014). https://doi.org/10.1002/pts.2017

    Article  CAS  Google Scholar 

  42. B.N. Jung, D. Kang, S. Cheon, J.K. Shim, S.W. Hwang, J. Appl. Polym. Sci. 136, 47476 (2019). https://doi.org/10.1002/app.47476

    Article  CAS  Google Scholar 

  43. H.M. Moghaddam, M.H. Khoshtaghaza, A. Salimi, M. Barzegar, Polym.-Plast. Technol. Eng. 53(17), 1759–1767 (2014). https://doi.org/10.1080/03602559.2014.919647

    Article  CAS  Google Scholar 

  44. M.M. Reddy, R.K. Gupta, S.N. Bhattacharya, R. Parthasarathy, Korea-Aust. Rheol. J. 19(3), 133–139 (2007) www.researchgate.net/publication/283352900

    Google Scholar 

  45. A. Casariego, B.W.S. Souza, M.A. Cerqueira, J.A. Teixeira, L. Cruz, R. Diaz, A.A. Vicente, Food Hydrocolloids 23, 1895–1902 (2009). https://doi.org/10.1016/j.foodhyd.2009.02.007

    Article  CAS  Google Scholar 

  46. N. Bumbudsanpharoke, W. Lee, J.C. Choi, S.J. Park, M. Kim, S. Ko, Clay Clay Miner. 65(6), 387–397 (2017). https://doi.org/10.1346/CCMN.2017.064071

    Article  CAS  Google Scholar 

  47. H. Li, F. Li, L. Wang, J. Sheng, Z. Xin, L. Zhao, H. Xiao, Y. Zheng, Q. Hu, Food Chem. 114, 547–562 (2009). https://doi.org/10.1016/j.foodchem.2008.09.085

    Article  CAS  Google Scholar 

  48. N. Du, H.B. Park, M.M. Dal-Cin, M.D. Guiver, Energy Environ. Sci. 5, 7306–7322 (2012). https://doi.org/10.1039/C1EE02668B

    Article  CAS  Google Scholar 

  49. R. Gholami, E. Ahmadi, S. Farris, Food Packag. Shelf Life 14, 88–95 (2017). https://doi.org/10.1016/j.fpsl.2017.09.001

    Article  Google Scholar 

  50. A.L. Rubio, E. Almenar, P.H. Munoz, J.M. Lagaron, R. Catala, R. Gavara, Food Rev. Int. 20, 357–387 (2004). https://doi.org/10.1081/FRI-200033462

    Article  CAS  Google Scholar 

  51. P. Kanmani, J.W. Rhim, Carbohydr. Polym. 106, 190–199 (2014). https://doi.org/10.1016/j.carbpol.2014.02.007

    Article  CAS  PubMed  Google Scholar 

  52. T. Malwela, S. Sinha, Polymer 52(5), 1297–1301 (2011) hdl.handle.net/10204/5468

    Article  CAS  Google Scholar 

  53. V. Viswanathan, T. Laha, K. Balani, A. Agarwal, S. Seal, Mater. Sci. Eng. R Rep. 54, 121–285 (2006). https://doi.org/10.1016/j.mser.2006.11.002

    Article  CAS  Google Scholar 

  54. B. Kord, A. Hemmasi, I. Ghasemi, Wood Sci. Technol. 45, 111–119 (2011). https://doi.org/10.1007/s00226-010-0309-7

    Article  CAS  Google Scholar 

  55. S. Dadashi, M. Mousavi, Z. Emam-Djomeh, Iran. J. Sci. Technol. 25(2), 127–136 (2012). https://doi.org/10.22063/jipst.2012.555

    Article  CAS  Google Scholar 

  56. A.S. Alex, R. Rajeev, K. Krishnaraj, N. Sreenivas, S. Manu, C. Gouri, V. Sekkar, Polym. Degrad. Stab. 144, 281–291 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.08.026

    Article  CAS  Google Scholar 

  57. M.R. Rahman, J. Lai Chang Hui, S.B. Hamdan, Polyvinyl alcohol/silica/clay nanocomposites: effect of clay on surface morphology, electrical, in Silica and Clay Dispersed Polymer Nanocomposites, (Woodhead Publishing, Cambridge, 2018). https://doi.org/10.1016/B978-0-08-102129-3.00004-X

    Chapter  Google Scholar 

  58. S. El-Gamal, M. Elsayed, Polym. Test. 2020, 106681 (2020). https://doi.org/10.1016/j.polymertesting.2020.106681

    Article  CAS  Google Scholar 

  59. A.M. Hezma, I.S. Elashmawi, E.M. Abdelrazek, A. Rajeh, M. Kamal, Prog. Nat. Sci.-Mater. 27(3), 338–343 (2017). https://doi.org/10.1016/j.pnsc.2017.06.001

    Article  CAS  Google Scholar 

  60. S. Ayaz, M. Ishaq, K. Saeed, I. Ahmed, N.K. Khalil, J. Vinyl Addit. Technol. 23(2), 80–85 (2017). https://doi.org/10.1002/vnl.21488

    Article  CAS  Google Scholar 

  61. J. Golebiewski, A. Galeski, Compos. Sci. Technol. 67, 3442–3447 (2007). https://doi.org/10.1016/j.compscitech.2007.03.007

    Article  CAS  Google Scholar 

  62. D. Liu, H. Li, L. Jiang, Y. Chuan, M. Yuan, H. Chen, Molecules 21, 695 (2016). https://doi.org/10.3390/molecules21060695

    Article  CAS  PubMed Central  Google Scholar 

  63. A. Buzarovska, A. Grozdanov, J. Appl. Polym. Sci. 123, 2187–2193 (2011). https://doi.org/10.1002/app.34729

    Article  CAS  Google Scholar 

  64. H. Tian, H. Tagaya, J. Mater. Sci. 42, 3244–3250 (2007). https://doi.org/10.1007/s10853-006-0230-5

    Article  CAS  Google Scholar 

  65. H. Tian, H. Tagaya, J. Mater. Sci. 43, 766–770 (2008)

    Article  CAS  Google Scholar 

  66. R. Sahraeian, S.A. Hashemi, M. Esfandeh, I. Ghasemi, Polym. Polym. Compos. 20, 639 (2012). https://doi.org/10.1177/096739111202000708

    Article  CAS  Google Scholar 

  67. R. Sahraeian, M. Esfandeh, S.A. Hashemi, Polym. Compos. 21, 243 (2013). https://doi.org/10.1177/096739111302100406

    Article  CAS  Google Scholar 

  68. R. Sahraeian, M. Esfandeh, Polym. Bull. 74, 1327–1341 (2017). https://doi.org/10.1007/s00289-016-1779-z

    Article  CAS  Google Scholar 

  69. M.S. Radoičić, Z. Aponjic, M.T. Marinović-Cincović, S. Ahrenkiel, N. Bibić, J.M. Nedeljkovic, J. Serb. Chem. Soc. 77(5), 699–714 (2012). https://doi.org/10.2298/JSC110331161R

    Article  CAS  Google Scholar 

  70. M. Murariu, A. Doumbia, L. Bonnaud, Y. Dechief, M. Ferreira, C. Campagne, E. Devaux, P. Dubois, Biomacromolecules 12, 1762–1771 (2011). https://doi.org/10.1021/bm2001445

    Article  CAS  PubMed  Google Scholar 

  71. E. Lizundia, L. Pérez-Álvarez, M. Sáenz-Pérez, D. Patrocinio, J.L. Vilas, L.M. León, J. Appl. Polym. Sci. 133, 43619 (2016). https://doi.org/10.1002/app.43619

    Article  CAS  Google Scholar 

  72. Y. Zare, H. Garmabi, J. Appl. Polym. Sci. 124, 1225–1233 (2012). https://doi.org/10.1002/app.3513

    Article  CAS  Google Scholar 

  73. S.M. Davachi, A.S. Shekarabi, J. Biol. Macromol. 113, 66–72 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.106

    Article  CAS  Google Scholar 

  74. N. Shimpi, S. Shirole, S. Mishra, Polym. Compos. 38, 1273–1279 (2017). https://doi.org/10.1002/pc.23692

    Article  CAS  Google Scholar 

  75. N. Delpouve, G. Stoclet, A. Saiter, E. Dargent, S. Marais, J. Phys. Chem. B 116, 4615–4625 (2012). https://doi.org/10.1021/jp211670g

    Article  CAS  PubMed  Google Scholar 

  76. R. Shanks, in Handbook of Plastic Films, ed. by E. M. Abdel-Bary, (Rapra Technology Ltd, Shropshire, 2003), pp. 5–38 http://researchbank.rmit.edu.au/view/rmit:3684

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

HB—Ph.D Student, Collected test data and drafted the manuscript, designed the study and interpreted the results. EA—Supervisor, definition, design and supervision of the project, review and interpret the results. SA—Advisor, method of testing, setting and calibrating devices, result discussion.

Corresponding author

Correspondence to Ebrahim Ahmadi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barikloo, H., Ahmadi, E. & Ahmadi, S. Evaluation of PE/POE/PA6 blends containing silica and clay toward nano composite packaging film. Food Measure 15, 2297–2308 (2021). https://doi.org/10.1007/s11694-020-00781-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00781-x

Keywords

Navigation