Skip to main content
Log in

Optimizing homogenizer-assisted extraction of chlorophylls from plantain epicarp (Musa paradisiaca L.)

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The objective of this study was to establish parameters of optimization of the factors such as solid/solvent ratio, stirring speed and extraction time in homogenizer-assisted extraction (HAE) of chlorophyll a, b and total from plantain epicarp (Musa paradisiaca L.) using the Box–Benhken design. The individual effect and the interactions of the process variables (solid/solvent ratio, stirring speed (revolutions per minute, rpm), and extraction time in HAE) on the chlorophyll a, b and total contents in the extract were studied. The optimization was carried out with a Derringer desirability function, and it was found that the optimal extraction conditions included a solid/solvent ratio of 0.025 g/mL, an stirring speed of 13,508 and 90 s of treatment with Ultra-turrax. The corresponding predicted values were 33.67 mg/100 g of chlorophyll a, 32.915 mg/100 g of chlorophyll b and 66.585 mg/100 g of total chlorophyll. Finally, the optimal conditions were experimentally verified, and it was established that extraction with an Ultra-Turrax treatment is more efficient than the conventional method (maceration).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. FAO, 2020. Cultivos [WWW Document]. https://www.fao.org/faostat/en/#data/QC accessed 23 March 20.

  2. C.E. Rodríguez, Cadena logística de subproductos residuales en la industria de tajada de plátano para exportación Waste-product supply chain in the banana industry for export chop. Dimens. Empres. 11, 9–16 (2013)

    Article  Google Scholar 

  3. L.G. Blasco, M.F.J. Gómez, 2014 (Rev. Médica La Univ, Veracruzana, 2014)

    Google Scholar 

  4. N. Mirabella, V. Castellani, S. Sala, J. Clean Prod. (2014). https://doi.org/10.1016/j.jclepro.2013.10.051

    Article  Google Scholar 

  5. D. Pleissner, Q. Qi, C. Gao, C.P. Rivero, C. Webb, C.S.K. Lin, J. Venus, Biochem. Eng. J. (2016). https://doi.org/10.1016/j.bej.2015.12.016

    Article  Google Scholar 

  6. N. M’hiri, I. Ioannou, M. Ghoul, N. Mihoubi Boudhrioua, Food Rev Int. (2017). https://doi.org/10.1080/87559129.2016.1196489

    Article  Google Scholar 

  7. M. Sanz-Puig, P. Moreno, M.C. Pina-Pérez, D. Rodrigo, A. Martínez, LWT-Food Sci. Technol. (2017). https://doi.org/10.1016/j.lwt.2016.11.031

    Article  Google Scholar 

  8. P. Ding, S.H. Ahmad, A.R.A. Razak, N. Saari, M.T.M. Mohamed, N. Z. J. Crop Hortic. Sci. (2007). https://doi.org/10.1080/01140670709510186

    Article  Google Scholar 

  9. M.A.M. Jinasena, A.D.U.S. Amarasinghe, B.M.W.P.K Amarasinghe, M.A.B. Prashantha. J. Natl. Sci. Found. (2016). https://doi.org/10.4038/jnsfsr.v44i1.7977

  10. J.J. Fu, S. Shen, W. Liu, H.B. Wang, W.D. Gao, Therm. Sci. (2017). https://doi.org/10.2298/TSCI160901080F

    Article  Google Scholar 

  11. Y.R. Kang, J. Park, S.K. Jung, Y.H. Chang, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2017.11.079

    Article  PubMed  Google Scholar 

  12. L. Ngamwonglumlert, S. Devahastin, N. Chiewchan. Crit. Rev. Food Sci. Nutr. (2017).

  13. A. Kizhedath, V. Suneetha, J. Pharm. Res. 4, 1412–1413 (2011)

    CAS  Google Scholar 

  14. P. Amchova, H. Kotolova, J. Ruda-Kucerova, J. Ruda-Kucerova, Regul. Toxicol. Pharmacol. (2015). https://doi.org/10.1016/j.yrtph.2015.09.026

    Article  PubMed  Google Scholar 

  15. M. Attokaran, Natural Food Flavors and Colorants, 2nd edn. (Blackwell Publishing, Oxford, 2011)

    Book  Google Scholar 

  16. J. Giacometti, D.B. Kovacevic, P. Putnik, D. Gabric, T. Bilusic, G. Kresic, V. Stulic, F.J. Barba, F. Chemat, G. Barbosa-Cánobas, A.R. Jambrak, Food Res. Int. (2018). https://doi.org/10.1016/j.foodres.2018.06.036

    Article  PubMed  Google Scholar 

  17. B. Yang, Y. Juang, J. Shi, F. Chen, M. Ashraf, Extraction and pharmacological properties of bioactive compounds from longan (Dimocarpus longan Lour.) fruit—a review. Food Res. Int. 44(7), 1837–1842 (2011). https://doi.org/10.1016/j.foodres.2010.10.019

    Article  CAS  Google Scholar 

  18. G.A. Pereira, G. Molina, H.S. Arruda, G.M. Pastore, J. Food Process Eng. (2017). https://doi.org/10.1111/jfpe.12438

    Article  Google Scholar 

  19. G. Rocchetti, F. Blasi, D. Montesano, S. Ghisoni, M.C. Marcotullio, S. Sabatini, L. Cossignani, L. Lucini, Food Res. Int. (2019). https://doi.org/10.1016/j.foodres.2018.11.046

    Article  PubMed  Google Scholar 

  20. V. Eyiz, I. Tontul, S. Turker, J. Food Meas. Charact. (2020). https://doi.org/10.1007/s11694-019-00265-7

    Article  Google Scholar 

  21. B. Baria, N. Upadhyay, A.K. Singh, R.K. Malhotra, LWT-Food Sci. Technol. (2019). https://doi.org/10.1016/j.lwt.2019.01.044

    Article  Google Scholar 

  22. M. Bilgin, E.A.A. Elhussein, M. Özyürek, K. Güçlü, S. Şahin, J. Pharm. Biomed. Anal. (2018). https://doi.org/10.1016/j.jpba.2018.05.039

    Article  PubMed  Google Scholar 

  23. V.G. Zuin, M.L. Segatto, K. Zanotti, Pure Appl. Chem. (2020). https://doi.org/10.1515/pac-2019-1001

    Article  Google Scholar 

  24. AOAC, Official Methods of Analysis of AOAC International, 17th edn. (AOAC International, Rockville, 2000)

    Google Scholar 

  25. A.D. Richardson, S.P. Duigan, G.P. Berlyn, New Phytol. (2002). https://doi.org/10.1046/j.0028-646X.2001.00289.x

    Article  Google Scholar 

  26. T. Ignat, Z. Schmilovitch, J. Feföldi, N. Bernstein, B. Steiner, H. Egozi, A. Hoffman, Biosyst. Eng. (2013). https://doi.org/10.1016/j.biosystemseng.2012.10.001

    Article  Google Scholar 

  27. Y. Tong, L. Gao, G. Xiao, X. Pan, J. Food Process Eng. (2012). https://doi.org/10.1111/j.1745-4530.2010.00629.x

    Article  Google Scholar 

  28. J.P. Maran, S. Manikandan, K. Thirugnanasambandham, C. Vigna Nivetha, R. Dinesh, Carbohydr. Polym. (2013). https://doi.org/10.1016/j.carbpol.2012.09.020

    Article  PubMed  Google Scholar 

  29. J.P. Maran, S. Manikandan, V. Mekala, Ind. Crops Prod. (2013). https://doi.org/10.1016/J.INDCROP.2013.05.012

    Article  Google Scholar 

  30. I. Ambarsari, B.E. Brown, R.G. Barlow, G. Britton, D. Cummings, Ecol. Prog. Ser. (1997). https://doi.org/10.3354/meps159303

    Article  Google Scholar 

  31. R. Delgado-Pelayo, L. Gallardo-Guerrero, D. Hornero-Méndez, Food Res. Int. (2014). https://doi.org/10.1016/J.FOODRES.2014.03.025

    Article  Google Scholar 

  32. G.J. Swamy, A. Sangamithra, V. Chandrasekar, Dye. Pigment. (2014). https://doi.org/10.1016/J.DYEPIG.2014.05.028

    Article  Google Scholar 

  33. M. Butnariu, C.Z. Coradini, Chem. Cent. J. (2012). https://doi.org/10.1186/1752-153X-6-35

    Article  PubMed  PubMed Central  Google Scholar 

  34. X. Hu, A. Tanaka, R. Tanaka, Plant Methods (2013). https://doi.org/10.1186/1746-4811-9-19

    Article  PubMed  PubMed Central  Google Scholar 

  35. C.V. Quintero, G.G. Giraldo, A.J. Lucas, L.J. Vasco. Caracterización fisicoquímica del mango comun (Mangifera indica L.) durante su proceso de maduracion. Biotecnol. Sect. Agropecu. y Agroind. (2013).

  36. L. Tomsone, R. Galoburda, Z. Kruma, I. Cinkmanis, Eur. Food Res. Technol. (2020). https://doi.org/10.1007/s00217-020-03521-z

    Article  Google Scholar 

  37. G.P. Isaak, V.B. Kudachikar, S.G. Kulkarni, M.S. Vasantha, J. Food Sci. Technol. 41(6), 646–651 (2004)

    Google Scholar 

  38. V.B. Kudachikar, S.G. Kulkarni, M.N.K. Prakash, J. Food Sci. Technol. (2011). https://doi.org/10.1007/s13197-011-0238-y

    Article  PubMed  PubMed Central  Google Scholar 

  39. N. Sumanta, C.I. Haque, J. Nishika, R. Suprakash, Res. J. Chem. Sci. 4, 2231–2606 (2014)

    Google Scholar 

  40. R. Vladkova, Photochem. Photobiol. (2000). https://doi.org/10.1562/0031-8655(2000)071%3c0071:CASAIP%3e2.0.CO;2

    Article  PubMed  Google Scholar 

  41. A.R. Wellburn, J. Plant Physiol. (1994). https://doi.org/10.1016/S0176-1617(11)81192-2

    Article  Google Scholar 

  42. M. de la Luz Cádiz-Gurrea, G. Zengin, O. Kayacık, D.M.F. Lobine, M.F. Mahomoodally, F.J. Leyva-Jiménez, A. Segura-Carretero, J. Sci. Food Agric. (2019). https://doi.org/10.1002/jsfa.9875

    Article  PubMed  Google Scholar 

  43. S. Dall’Acqua, G. Kumar, K.I. Sinan, S. Sut, I. Ferrarese, M.F. Mahomoodally, R. Seebaluck-Sandoram, O.K. Etiene, G. Zengin, Ind. Crop. Prod. (2020). https://doi.org/10.1016/j.indcrop.2020.112226

    Article  Google Scholar 

  44. Á.L. Santana, J.A. Zanini, G.A. Macedo, J. Food Process Eng. (2020). https://doi.org/10.1111/jfpe.1338

    Article  Google Scholar 

  45. K.H. Cha, H.J. Lee, S.Y. Koo, D.G. Song, D.U. Lee, C.H. Pan, J. Agric. Food Chem. (2010). https://doi.org/10.1021/jf902628j

    Article  PubMed  Google Scholar 

  46. S. Kaewmuangma, S. Phimphilai, Food Appl. Biosci. J. 2, 152–160 (2014)

    Google Scholar 

  47. M. Bilgin, S. Şahin, J. Taiwan Inst. Chem. Eng. (2013). https://doi.org/10.1016/j.jtice.2012.08.008

    Article  Google Scholar 

  48. C.H.K. Santos, M.R. Baqueta, A. Coqueiro, M.I. Dias, L. Barros, M.F. Barreiro, I.C.F.R. Ferreira, O.H. Goncalves, M.V. da Silva, F.V. Leimann, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2018.04.057

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Universidad Nacional de Colombia Sede Palmira.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Eduardo Ordóñez-Santos.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordóñez-Santos, L.E., Garzón-García, A.M. Optimizing homogenizer-assisted extraction of chlorophylls from plantain epicarp (Musa paradisiaca L.). Food Measure 15, 1108–1115 (2021). https://doi.org/10.1007/s11694-020-00703-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00703-x

Keywords

Navigation