Skip to main content
Log in

Optimization of polyphenolic compounds extraction methods from Okra stem

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Conventional solvent extraction (CSE), microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) have used to recover phenolic substances from Okra stem (as a related agro-industrial waste). The influences of three extraction methods in terms of total phenolic content (TPC), antioxidant activities (AA) and extraction yield (EY) of Okra stem are investigated and compared. The DPPH, ABTS, FRAP, and β-carotene bleaching methods are used for determining AA. The phenolic compounds’ values existing in Okra stem are determined by High-performance liquid chromatography (HPLC) analysis. The optimized MAE has been compared with both optimized CSE and UAE. The results show that the former method gives the higher TPC (69.99 mg GAE g−1) in the shorter time as compared to CSE and UAE methods by about 89% and 78.17%, respectively. The UAE method shows the best performance in AA (53.06%, 60.10%, 0.94 mM TE g DE, and 69.27% for DPPH, ABTS, FRAP and β-carotene bleaching, respectively) and EY with the content of 19.24%. Regarding the phenolic profile, catechin derivative (9.45 mg g−1) is the main compound which is found in the extracts as well as hydroxycinnamic derivative (9.11 mg g−1) and flavonol (4.99 mg g−1). The obtained results indicate that Okra stems have the capability of being productive sources of phenolic compounds with antioxidant properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y. Chen, J.G. Zhang, H.J. Sun, Z.J. Wei, Pectin from Abelmoschus esculentus: optimization of extraction and rheological properties. Int. J. Biol. Macromol. 70, 498–505 (2014)

    Article  CAS  Google Scholar 

  2. B. Yuan, C. Ritzoulis, J. Chen, Extensional and shear rheology of a food hydrocolloid. Food Hydrocoll. 74, 296–306 (2018). https://doi.org/10.1016/j.foodhyd.2017.08.019

    Article  CAS  Google Scholar 

  3. Q. Yuan, S. Lin, Y. Fu, X.R. Nie, W. Liu, Y. Su, Q.H. Han, L. Zhao, Q. Zhang, D.R. Lin, W. Qin, D.T. Wu, Effects of extraction methods on the physicochemical characteristics and biological activities of polysaccharides from Okra (Abelmoschus esculentus). Int. J. Biol. Macromol. 127, 178–186 (2019). https://doi.org/10.1016/j.ijbiomac.2019.01.042

    Article  CAS  PubMed  Google Scholar 

  4. N. Jiang, C. Liu, D. Li, Z. Zhang, C. Liu, D. Wang, L. Niu, M. Zhang, Evaluation of freeze-drying combined with microwave vacuum drying for functional Okra snacks: Antioxidant properties, sensory quality, and energy consumption. LWT 82, 216–226 (2017). https://doi.org/10.1016/j.lwt.2017.04.015

    Article  CAS  Google Scholar 

  5. N. Georgiadis, C. Ritzoulis, G. Sioura, P. Kornezou, C. Vasiliadou, C. Tsioptsias, Contribution of Okra extracts to the stability and rheology of oil-in-water emulsions. Food Hydrocoll. 25, 991–999 (2011). https://doi.org/10.1016/j.foodhyd.2010.09.014

    Article  CAS  Google Scholar 

  6. V. Kontogiorgos, I. Margelou, N. Georgiadis, C. Ritzoulis, Rheological characterization of Okra pectins. Food Hydrocoll. 29(2), 356–362 (2012). https://doi.org/10.1016/j.foodhyd.2012.04.003

    Article  CAS  Google Scholar 

  7. J. Liu, Y. Zhao, Q. Wu, A. John, Y. Jiang, J. Yang, H. Liu, B. Yang, Structure characterization of polysaccharides in vegetable “Okra” and evaluation of hypoglycemic activity. Food Chem. 242, 211–216 (2018). https://doi.org/10.1016/j.foodchem.2017.09.051

    Article  CAS  PubMed  Google Scholar 

  8. M.S. Jesus, Z. Genisheva, A. Romani, R.N. Pereira, J.A. Teixeira, L. Domingues, Bioactive compounds recovery optimization from vine pruning residues using conventional heating and microwave-assisted extraction methods. Ind. Crops Prod. 132, 99–110 (2019). https://doi.org/10.1016/j.indcrop.2019.01.070

    Article  CAS  Google Scholar 

  9. M. Panic, M.R. Stojkovic, K. Kraljic, D. Skevin, I.R. Redovnikovic, V.G. Srcek, K. Radosevic, Ready-to-use green polyphenolic extracts from food by-products. Food Chem. 283, 628–636 (2019). https://doi.org/10.1016/j.foodchem.2019.01.061

    Article  CAS  PubMed  Google Scholar 

  10. P. Selvakumar, P. Sivashanmugam, Studies on the extraction of polyphenolic compounds from pre-consumer organic solid waste. J. Ind. Eng. Chem. 82, 130–137 (2020). https://doi.org/10.1016/j.jiec.2019.10.004

    Article  CAS  Google Scholar 

  11. T.W. Caldas, K.E.L. Mazza, A.S.C. Teles, G.N. Mattos, A.I.S. Brigida, C.A. ConteJunior, R.G. Borguini, R.L.O. Godoy, L.M.C. Cabral, R.V. Tonon, Phenolic compounds recovery from grape skin using conventional and nonconventional extraction methods. Ind. Crops Prod. 111, 86–91 (2018). https://doi.org/10.1016/j.indcrop.2017.10.012

    Article  CAS  Google Scholar 

  12. B. Ozturk, C. Parkinson, M. Gonzalez-Miquel, Extraction of polyphenolic antioxidants from orange peel waste using deep eutectic solvents. Sep. Purif. Technol. 206, 1–13 (2018). https://doi.org/10.1016/j.seppur.2018.05.052

    Article  CAS  Google Scholar 

  13. X. Luo, J. Cui, H. Zhang, Y. Duan, D. Zhang, M. Cai, G. Chen, Ultrasound assisted extraction of polyphenolic compounds from red sorghum (Sorghum bicolor L.) bran and their biological activities and polyphenolic compositions. Ind. Crops Prod. 112, 296–304 (2018). https://doi.org/10.1016/j.indcrop.2017.12.019

    Article  CAS  Google Scholar 

  14. G.S.D. Rosa, S.K. Vanga, Y. Gariepy, V. Raghavan, Comparison of microwave, ultrasonic and conventional techniques for extraction of bioactive compounds from olive leaves (Oleaeuropaea L.). Innovat. Food Sci. Emerg. Technol. 58, 102234 (2019). https://doi.org/10.1016/j.ifset.2019.102234

    Article  CAS  Google Scholar 

  15. I. Zardo, A.D.E. Sobczyk, L.D.F. Marczak, J. Sarkis, Optimization of ultrasound-assisted extraction of phenolic compounds from sunflower seed cake using response surface methodology. Waste Biomass Valoriz. 10, 33–44 (2019). https://doi.org/10.1007/s12649-017-0038-3

    Article  CAS  Google Scholar 

  16. F. Dahmoune, G. Spigno, K. Moussi, H. Remini, A. Cherbal, K. Madani, Pistacialentiscus leaves as a source of phenolic compounds: microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind. Crops Prod. 61, 31–40 (2014). https://doi.org/10.1016/j.indcrop.2014.06.035

    Article  CAS  Google Scholar 

  17. M. Hoda, S. Hemaiswarya, M. Doble, Role of Phenolic Phytochemicals in Diabetes Management: Phenolic Phytochemicals and Diabetes, 1st edn. (Springer, Singapore, 2019)

    Book  Google Scholar 

  18. I. Ahmad, A. Yanuar, K. Mulia, A. Mun’im, Optimization of ionic liquid-based microwave-assisted extraction of polyphenolic content from Peperomia pellucida (L.) kunth using response surface methodology. Asian Pac. J. Trop. Biomed. 7(7), 660–665 (2017). https://doi.org/10.1016/j.apjtb.2017.06.010

    Article  Google Scholar 

  19. G. Rocchetti, F. Blasi, D. Montesano, S. Ghisoni, M.C. Marcotullio, S. Sabatini, L. Cossignani, L. Lucini, Impact of conventional/non-conventional extraction methods on the untargeted phenolic profile of Moringa oleifera leaves. Food Res. Int. 115, 319–327 (2019). https://doi.org/10.1016/j.foodres.2018.11.046

    Article  CAS  PubMed  Google Scholar 

  20. M. Vinatoru, T.J. Mason, I. Calinescu, Ultrasonically assisted extraction (UAE) and microwave-assisted extraction (MAE) of functional compounds from plant materials. Trends Anal. Chem. 97, 159–178 (2017). https://doi.org/10.1016/j.trac.2017.09.002

    Article  CAS  Google Scholar 

  21. S.-S. Teh, B.E. Niven, A.E.-D.A. Bekhit, A. Carne, E.J. Birch, Microwave and pulsed electric field assisted extractions of polyphenols from defatted canola seed cake. Int. J. Food Sci. Technol. 50(5), 1109–1115 (2015). https://doi.org/10.1111/ijfs.12749

    Article  CAS  Google Scholar 

  22. I. Pawlaczyk-Graja, S. Balicki, K.A. Wilk, Effect of various extraction methods on the structure of polyphenolic-polysaccharide conjugates from Fragaria vesca L. leaf. Int. J. Biol. Macromol. 130, 664–674 (2019). https://doi.org/10.1016/j.ijbiomac.2019.03.013

    Article  CAS  PubMed  Google Scholar 

  23. K. Kaderides, L. Papaoikonomou, M. Serafim, A.M. Goula, Microwave-assisted extraction of phenolics from pomegranate peels: optimization, kinetics, and comparison with ultrasounds extraction. Chem. Eng. Process. 137, 1–11 (2019). https://doi.org/10.1016/j.cep.2019.01.006

    Article  CAS  Google Scholar 

  24. L. Cassol, E. Rodrigues, C.P.Z. Norena, Extracting phenolic compounds from Hibiscussabdariffa L. calyx using microwave-assisted extraction. Ind. Crops Prod. 133, 168–177 (2019)

    Article  CAS  Google Scholar 

  25. A.-M. Galan, I. Calinescu, A. Trifan, C. Winkworth-Smith, M. Calvo-Carrascal, C. Dodds, E. Binner, New insights into the role of selective and volumetric heating during microwave extraction: investigation of the extraction of polyphenolic compounds from sea buckthorn leaves using microwave-assisted extraction and conventional solvent extraction. Chem. Eng. Process. 116, 29–39 (2017). https://doi.org/10.1016/j.cep.2017.03.006

    Article  CAS  Google Scholar 

  26. R.F. Dibanda, E.P. Akdowa, A. Rani, Q.M. Tongwa, C.M. Mbofung, Effect of microwave blanching on antioxidant activity, phenolic compounds and browning behavior of some fruit peelings. Food Chem. 302, 125308 (2020). https://doi.org/10.1016/j.foodchem.2019.125308

    Article  CAS  Google Scholar 

  27. F. Chemat, G. Cravotto, Microwave-Assisted Extraction for Bioactive Compounds: Theory and Practice, 1st edn. (Springer, Boston, 2013)

    Book  Google Scholar 

  28. M. Ramic, S. Vidovic, Z. Zekovic, J. Vladic, A. Cvejin, B. Pavlic, Modeling and optimization of ultrasound-assisted extraction of polyphenolic compounds from Aronia melanocarpa by-products from filter-tea factory. Ultrason. Sonochem. 23, 360–368 (2015). https://doi.org/10.1016/j.ultsonch.2014.10.002

    Article  CAS  PubMed  Google Scholar 

  29. L. Lingzhu, W. Lu, C. Dongyan, L. Jingbo, L. Songyi, Y. Haiqing, Y. Yuan, Optimization of ultrasound-assisted extraction of polyphenols from maize filaments by response surface methodology and its identification. J. Appl. Botany. Food Qual. 88, 152–163 (2015). https://doi.org/10.5073/JABFQ.2015.088.022

    Article  Google Scholar 

  30. R.M. Bodoira, D.M. Maestri, Phenolic compounds from nuts: extraction, chemical profiles and bioactivity. J. Agric. Food Chem. 68(4), 927–942 (2020). https://doi.org/10.1021/acs.jafc.9b07160

    Article  CAS  PubMed  Google Scholar 

  31. N. El-Darra, N. Grimi, R.G. Maroun, N. Louka, E. Vorobiev, Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur. Food Res. Technol. 236, 47–56 (2013). https://doi.org/10.1007/s00217-012-1858-9

    Article  CAS  Google Scholar 

  32. A. Ciric, B. Krajnc, D. Heath, N. Ogrinc, Response surface methodology and artificial neural network approach for the optimization of ultrasound-assisted extraction of polyphenols from garlic. Food. Chem. Toxicol. 135, 110976 (2020). https://doi.org/10.1016/j.fct.2019.110976

    Article  CAS  PubMed  Google Scholar 

  33. B.R. Albuquerque, M.A. Prieto, M.F. Barreiro, A. Rodrigues, T.P. Curran, L. Barros, I.C.F.R. Ferreira, Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crops Prod. 95, 404–415 (2017). https://doi.org/10.1016/j.indcrop.2016.10.050

    Article  CAS  Google Scholar 

  34. I.M.D. Rosa, J.M. Kenny, M. Maniruzzaman, Md Moniruzzaman, M. Monti, D. Puglia, C. Santulli, F. Sarasini, Effect of chemical treatments on the mechanical and thermal behavior of Okra (Abelmoschus esculentus) fibers. Compos. Sci. Technol. 71(2), 246–254 (2011). https://doi.org/10.1016/j.compscitech.2010.11.023

    Article  CAS  Google Scholar 

  35. E. Rincon, A.M. Balu, R. Luque, L. Serrano, Mechanochemical extraction of antioxidant phenolic compounds from Mediterranean and medicinal Laurus nobilis: a comparative study with other traditional and green novel techniques. Ind. Crops Prod. 141, 111805 (2019). https://doi.org/10.1016/j.indcrop.2019.111805

    Article  CAS  Google Scholar 

  36. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatic. J. Food. Drug Anal. 22, 296–302 (2014). https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  37. P. Rodsamran, R. Sothornvit, Extraction of phenolic compounds from lime peel waste using ultrasonic-assisted and microwave-assisted extractions. Food Biosci. 28, 66–73 (2019). https://doi.org/10.1016/j.fbio.2019.01.017

    Article  CAS  Google Scholar 

  38. F.T. Pastor, D.M. Šegan, S.Ž. Gorjanović, A.M. Kalušević, D.Ž. Sužnjević, Development of voltammetric methods for antioxidant activity determination based on Fe(III) reduction. Microchem. J. 155, 104721 (2020). https://doi.org/10.1016/j.microc.2020.104721

    Article  CAS  Google Scholar 

  39. M. Hamed, H. Bougatef, W. Karoud, F. Krichen, A. Haddar, A. Bougatef, A. Sila, Polysaccharides extracted from pistachio external hull: characterization, antioxidant activity and potential application on meat as preservative. Ind. Crops Prod. 148, 112315 (2020). https://doi.org/10.1016/j.indcrop2020.112315

    Article  CAS  Google Scholar 

  40. B. Pavlic, M. Kaplan, O. Bera, E.O. Olgun, O. Canli, N. Milosavljevic, B. Antic, Z. Zekovic, Microwave-assisted extraction of peppermint polyphenols: artificial neural networks approach. Food Bioprod. Process. 118, 258–269 (2019). https://doi.org/10.1016/j.fbp.2019.09.016

    Article  CAS  Google Scholar 

  41. L.G.G. Rodrigues, S. Mazzutti, L. Vitali, G.A. Micke, S.R.S. Ferreira, Recovery of bioactive phenolic compounds from papaya seeds agro-industrial residue using subcritical water extraction. Biocatal. Agric. Biotechnol. 22, 101367 (2019)

    Article  Google Scholar 

  42. P. Arapitsas, Identification and quantification of polyphenolic compounds from Okra seeds and skins. Food Chem. 110(4), 1041–1045 (2008). https://doi.org/10.1016/j.foodchem.2008.03.014

    Article  CAS  PubMed  Google Scholar 

  43. K. Biniari, M. Xenaki, I. Daskalakis, D. Rusjan, D. Bouza, M. Stavrakaki, Polyphenolic compounds and antioxidants of skin and berry grapes of Greek Vitis vinifera cultivars in relation to climate conditions. Food Chem. 307, 125518 (2020). https://doi.org/10.1016/j.foodchem.2019.125518

    Article  CAS  PubMed  Google Scholar 

  44. N. Medina-Torres, T. Ayora-Talavera, H. Espinosa-Andrews, A. Sanchez-Contreras, N. Pacheco, Ultrasound-Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy. 7(3), 47 (2017). https://doi.org/10.3390/agronomy7030047

    Article  CAS  Google Scholar 

  45. S. Akbari, N.H. Abdurahman, R.M. Yunus, Optimization of saponins, phenolics, and antioxidants extracted from fenugreek seeds using microwave-assisted extraction and response surface methodology as an optimizing tool. Comptes Rendus Chim. 22(11–12), 714–727 (2019). https://doi.org/10.1016/j.crci.2019.07.007

    Article  CAS  Google Scholar 

  46. O.R. Alara, S.K.A. Mudalip, N.H. Abdurahman, M.S. Mahmoud, E.O.O. Obanijesu, Data on parametric influence of microwave-assisted extraction on the recovery yield, total phenolic content and antioxidant activity of Phaleria macrocarpa fruit peel extract. Chem. Data Collect. 24, 100277 (2019). https://doi.org/10.1016/j.cdc.2019.100277

    Article  CAS  Google Scholar 

  47. I. Drevelegka, A.M. Goula, Recovery of grape pomace phenolic compounds through optimized extraction and adsorption processes. Chem. Eng. Process. 149, 107845 (2020). https://doi.org/10.1016/j.cep.2020.107845

    Article  CAS  Google Scholar 

  48. M.A. Bakht, M.H. Geesi, Y. Riadi, M. Imran, M.I. Ali, M.J. Ahsan, N. Ajmal, Ultrasound-assisted extraction of some branded tea: optimization based on polyphenol content, antioxidant potential and thermodynamic study. Saudi J. Biol. Sci. 26(5), 1043–1052 (2019). https://doi.org/10.1016/j.sjbs.2018.07.013

    Article  CAS  Google Scholar 

  49. S. Ferarsa, W. Zhang, N. Moulai-Mostefa, L. Ding, M.Y. Jaffrin, N. Grimi, Recovery of anthocyanins and other phenolic compounds from purple eggplant peels and pulps using ultrasonic-assisted extraction. Food Bioprod. Processing. 109, 19–28 (2018). https://doi.org/10.1016/j.fbp.2018.02.006

    Article  CAS  Google Scholar 

  50. K.V. Mahindrakar, V.K. Rathod, Ultrasonic assisted aqueous extraction of catechin and gallic acid from Syzygium cumini seed kernel and evaluation of total phenolic, flavonoid contents and antioxidant activity. Chem. Eng. Process. 149, 107841 (2020). https://doi.org/10.1016/j.cep.2020.107841

    Article  CAS  Google Scholar 

  51. D. Pinto, E.F. Vieira, A.F. Peixoto, C. Freire, V. Freitas, P. Costa, C. Delerue-Matos, F. Rodrigues, Optimizing the extraction of phenolic antioxidants from chestnut shells by subcritical water extraction using response surface methodology. Food Chem. 334, 127521 (2021). https://doi.org/10.1016/j.foodchem.2020.127521

    Article  CAS  PubMed  Google Scholar 

  52. M. Grzesik, K. Naparło, G. Bartosz, I. Sadowska-Bartosz, Antioxidant properties of catechins: comparison with other antioxidants. Food Chem. 241, 480–492 (2018). https://doi.org/10.1016/j.foodchem.2017.08.117

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Hossein Elhamirad.

Ethics declarations

Conflict of interest

The authors have reported that no competing interests exist.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirabbasi, S., Elhamirad, A.H., Saeediasl, M.R. et al. Optimization of polyphenolic compounds extraction methods from Okra stem. Food Measure 15, 717–734 (2021). https://doi.org/10.1007/s11694-020-00641-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00641-8

Keywords

Navigation