Skip to main content
Log in

Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

The moderate thermal (MT), ultrasound (US), and pulsed electric field (PEF) pretreatments are studied to enhance the phenolics extraction from Cabernet Franc (CF) grapes. The next pretreatment conditions are investigated: MT (50 °C, 15 min, 125 kJ/kg), US1 (24 kHz, 5 min, 121 kJ/kg), US2 (24 kHz, 10 min, 242 kJ/kg), US3 (24 kHz, 15 min, 363 kJ/kg), PEF1 (0.8 kV/cm, 100 ms, 42 kJ/kg), and PEF2 (5 kV/cm, 1 ms, 53 kJ/kg). The qualitative parameters of extracts (pH, °Brix, and color intensity), their total polyphenols content, anthocyanins, tannins, and free radical scavenging activity were determined during the whole period of alcoholic fermentation. The results show that all studied pretreatments improve phenolics extraction (anthocyanins and tannins content), color intensity, and scavenging activity of the samples during red fermentation. However, the moderate (0.8 kV/cm) and high (5 kV/cm) PEF were the most effective pretreatments and increased the phenolics extraction yield, respectively, on 51 and 62 %, while the MT and US3 pretreatments increased the phenolics extraction yield, respectively, on 20 and 7 %. The anthocyanin and tannins were also better extracted, and the color intensity was highest after the PEF pretreatments in comparison with the MT and US pretreatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

MT:

Moderate thermal

US:

Ultrasound

PEF:

Pulsed electric field

CF:

Cabernet Franc

DM:

Dry matter

GAE:

Gallic acid equivalent

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

OD:

Optical density

CI:

Color intensity

SO2 :

Sulfur dioxide

HCl:

Hydrochloric acid

R 2 :

Linear regression coefficient

d :

Distance between electrodes (cm)

E :

Electric field strength (V/cm)

n :

Number of pulses

N :

Number of trains

T :

Time (min)

t i :

Pulse duration (µs)

t PEF :

Effective time of PEF treatment (s)

Δt :

Time between pulses (ms)

Δt t :

Pause after each train (s)

m :

Mass of grapes (kg)

U :

Voltage (V)

W :

Energy consumption (kJ/kg)

Y 0 :

Initial content of total phenolic compounds (mg GAE/100 g DM)

Y t :

Content of total phenolic compounds at t (mg GAE/100 g DM)

References

  1. Jackson RS (2000) Wine sciences: principles, practice, perception, 2 nd edn. Academic Press, San Diego

    Google Scholar 

  2. Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds-biochemistry and functionality. J Med Food 6:291–299

    Article  CAS  Google Scholar 

  3. Monagas M, Bartolome B, Gomez-Cordoves C (2005) Updated knowledge about the presence of phenolic compounds in wine. Crit Rev Food Sci Nutr 45:85–118

    Article  CAS  Google Scholar 

  4. Pinelo M, Arnous A, Meyer AS (2006) Upgrading of grape skins: significance of plant cell-wall structural components and extraction techniques for phenol release. Trends Food Sci Technol 17:579–590

    Article  CAS  Google Scholar 

  5. Sun BS, Spanger MI, Roque-Do-Vale F, Leandro MC, Belchior AP (2001) Effect of different winemaking technology on phenolic composition in Tinta Miuda red wines. J. Agri Food Chem 49:5809–5816

    Article  CAS  Google Scholar 

  6. Sacchi KL, Bisson LF, Adams D (2005) A review of the effect of winemaking techniques on phenolic extraction in red wines. Am J Enol Vitic 56:197–206

    CAS  Google Scholar 

  7. López N, Puértolas E, Condón S, Álvarez I, Raso I (2008) Effects of pulsed electric fields on the extraction of phenolic compounds during the fermentation of must of Tempranillo grapes. Innov Food Sci Emerg Technol 9:477–482

    Article  Google Scholar 

  8. Parenti A, Spugnoli P, Calamai L, Ferrari S, Gori C (2004) Effects of cold maceration on red wine quality from Tuscan Sangiovese grape. Eur Food Res Technol 4:360–366

    Article  Google Scholar 

  9. Kelebek H, Canbas A, Cabaroglu T, Selli S (2007) Improvement of anthocyanin content in the cv. Okuzgozu wines by using pectolytic enzymes. Food Chem 105:334–339

    Article  CAS  Google Scholar 

  10. Palma MM, Taylor LT (1999) Extraction of polyphenolic compounds from grape seeds with near critical carbon dioxide. J Chromatogr A 849:117–124

    Article  CAS  Google Scholar 

  11. Delsart C, Ghidossi R, Poupot C, Cholet C, Grimi N, Vorobiev E, Milisic V, Mietton Peuchot M (2012) Enhanced extraction of valuable compounds from merlot grapes by pulsed electric field. Am J Enol, Vitic 11088

    Google Scholar 

  12. Boussetta N, Vorobiev E, Deloison V, Pochez F, Cordin-Falcimaigne A, Lanoisellé JL (2011) Valorisation of grape pomace by the extraction of phenolic antioxidants: application of HighVoltage Electrical discharges. Food Chem 128:364–370

    Article  CAS  Google Scholar 

  13. Chemat F, Zill EH, Khan MK (2011) Applications of ultrasound in food technology: processing, preservation and extraction. Ultrason Sonochem 18:813–835

    Article  CAS  Google Scholar 

  14. González MG, Usaquén-Castro X, Martínez RM, Aya-Baquero H (2006). Ultrasound-assisted Extraction of Polyphenols from Red-grape (Vitis Vinifera) Residues. 13th world congress of food science & technology

  15. Cabredo-Pinillos S, Cedron-Fernandez T, Gonzalez-Briongos M, Puente-Pascual L, Saenz-Barrio C (2006) Ultrasound-assisted extraction of volatile compounds from wine samples: optimization of the method. Talanta 69:1123–1129

    Article  CAS  Google Scholar 

  16. Corrales M, Toepfl S, Butz P, Knorr D, Tauscher B (2008) Extraction of anthocyanins from grape by-products assisted by ultrasonics, high hydrostatic pressure or pulsed electric fields: a comparison. Innov Food Sci Emerg Technol 9:85–91

    Article  CAS  Google Scholar 

  17. Ghafoor K, Choi YH, Jeon JY, In HJ (2009) Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants, and anthocyanins from grape (Vitis vinifera) seeds. J Agric Food Chem 57:4988–4994

    Article  CAS  Google Scholar 

  18. Novak I, Janeiro P, Seruga M, Oliveira-Brett A (2008) Ultrasound extracted flavonoids from four varieties of Portuguese red grape skins determined by reverse-phase high-performance liquid chromatography with electrochemical detection. Anal Chim Acta 630:107–115

    Article  CAS  Google Scholar 

  19. Cocito C, Gaetano G, Delfini C (1995) Rapid extraction of aroma compounds in must and wine by means of ultrasound. Food Chem 52:311–320

    Article  CAS  Google Scholar 

  20. Masuzawa N, Ohdaira E, Ide M (2000) Effects of ultrasonic irradiation on phenolic compounds in wine. Jpn J Appl Phys 39:2978–2979

    Article  CAS  Google Scholar 

  21. Vinatoru M, Toma M, Mason TJ (1999) Ultrasonically assisted extraction of bioactive principles from plants and the constituents. Adv Sonochem 5:216

    Google Scholar 

  22. Paniwnyk L, Beaufoy E, Lorimer JP, Mason TJ (2001) The extraction of rutin from flower buds of sophora japonica. Ultrason Sonochem 8:299–301

    Article  CAS  Google Scholar 

  23. Vorobiev E, Lebovka NI (2007) Extraction of intercellular components by pulsed electric fields. In: Raso J, Heinz V (eds) Pulsed electric field technology for the food industry. Fundamentals and applications, Springer, pp 153–194

    Google Scholar 

  24. Vorobiev E, Lebovka NI (2008) Pulsed electric field induced effects in plant tissues: fundamental aspects and perspectives of application. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials. Springer, Berlin, pp 39–82

    Google Scholar 

  25. Vorobiev E, Lebovka N (2010) Extraction from solid foods and biosuspensions enhanced by electrical pulsed energy (pulsed electric field, pulsed ohmic heating and high voltage electrical discharges). Food Engineering Reviews, no 2

  26. Toepfl S, Heinz V, Knorr D (2006) Applications of pulsed electric field technology for the food industry. In: Raso J, Heinz V (eds) Pulsed electric field treatment of foods. Elsevier, Oxford, pp 197–221

    Chapter  Google Scholar 

  27. Puértolas E, Saldaña G, Condón S, Álvarez I, Raso J (2010) Evolution of polyphenolic compounds in red wine from Cabernet Sauvignon grapes processed by pulsed electric fields during aging in bottle. Food Chem 119:1063–1070

    Article  Google Scholar 

  28. De Vito F, Ferrari G, Lebovka N, Shynkaryk M, Vorobiev E (2008) Pulse duration and efficiency of soft cellular tissue disintegration by pulsed electric fields. Food Bioprocess Technol 1:307–313

    Article  Google Scholar 

  29. Puértolas E, López N, Condón S, Álvarez I, Raso J (2010) Potential applications of PEF to improve red wine quality. Trends Food Sci Technol 21:247–255

    Article  Google Scholar 

  30. Donsi F, Ferrari G, Fruilo M, Pataro G (2010) Pulsed electric field-assisted vinification of Aglianico and Piedirosso Grapes. J Agric Food Chem 58:11606–11615

    Article  CAS  Google Scholar 

  31. Ratoarinoro CF, Wilhelm AM, Berlan J, Delmas H (1995) Power measurement in sonochemistry. Ultrason Sonochem 2:43–47

    Article  Google Scholar 

  32. Glories Y (1984) La couleur des vins rouges: 11 partie ‘‘les équilibres des anthocyanes et des tanins. Connaissance Vigne Vin 18:195–217

    CAS  Google Scholar 

  33. Slinkard K, Singleton VL (1977) Total phenol analyses: automation and comparison with manual methods. Am J Enol Vitic 28:49–55

    CAS  Google Scholar 

  34. Ribéreau-Gayon P (1970) Le dosage des composés phénoliques totaux dans les vins rouges. Chimie Analytique 52:627–631

    Google Scholar 

  35. Ribéreau-Gayon P, Stonestreet E (1968) Les dosages des anthocyanes dans le vin rouge. Bull Soc Chim Fr 9:2649–2652

    Google Scholar 

  36. Ribéreau-Gayon P (1998) Traité d’oenologie, tome 2. Ed Dunod

  37. Gyamfi MA, Yonamine M, Aniya Y (1999) Free-radical scavenging action of medicinal herbs from Ghana: thonningia sanguine on experimentally induced liver injuries. Gen Pharmacol 32:661–667

    Article  CAS  Google Scholar 

  38. Zanoni B, Siliani S, Canuti V, Rosi I, Bertuccioli M (2010) A kinetic study on extraction and transformation phenomena of phenolic compounds during red wine fermentation. Int J Food Sci Tech 45:2080–2088

    Article  CAS  Google Scholar 

  39. Amendola D, De Faveri DM, Spigno G (2010) Grape marc phenolics: extraction kinetics, quality and stability of extracts. J Food Eng 97:384–392

    Article  CAS  Google Scholar 

  40. Bucic-Kojic A, Planinic M, Tomas S, Bilic M, Velic D (2007) Study of solid-liquid extraction kinetics of total polyphenols from grape seeds. J Food Eng 81:236–242

    Article  CAS  Google Scholar 

  41. Tiwari BK, Patras A, Brunton N, Cullen PJ, O’Donnell CP (2010) Effect of ultrasound processing on anthocyanins and color of red grape juice. Ultrason Sonochem 17:598–604

    Article  CAS  Google Scholar 

  42. Mikolajzack M, Veyret M, Williams P, Doco T, Escudier JL (2011) Jus de raisin: comment extraire le maximum du potentiel de la baie de raisin. Revu francaise d’œnologie 249:24–32

    Google Scholar 

  43. Rostagno MA, Palma M, Barroso CG (2003) Ultrasound-assisted extraction of soy isoflavones. J Chromatogr A 1012:119–128

    Article  CAS  Google Scholar 

  44. Lecas M, Brillouet JM (1994) Cell wall composition of grape berry skins. Phytochemistry 35:1241–1243

    Article  CAS  Google Scholar 

  45. Vorobiev E, Lebovka NI (2011) Pulse electric field assisted extraction. In: Lebovka N, Vorobiev E, Chemat F (eds) Enhancing extraction processes in the food industry. CRC Press, USA

    Google Scholar 

  46. Vilkhu K, Mawson R, Simons L, Bates D (2008) Applications and opportunities for ultrasound assisted extraction in the food industry e a review. Innov Food Sci Emerg Technol 9:161–169

    Article  CAS  Google Scholar 

  47. Boulton R (2001) The copigmentation of anthocyanins and its role in the color of red wine: a critical review. Am J Enol Vitic. 52:67–86

    CAS  Google Scholar 

  48. Ribéreau-Gayon P (1982) The anthocyanins of grapes and wines. In: Markakis P (ed) Anthocyanins as food colors. Academic Press, New York, pp 209–244

    Google Scholar 

  49. Spigno GL, Tramelli L, De-Faveri DM (2007) Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J Food Eng 81:200–208

    Article  CAS  Google Scholar 

  50. Patras Ankit, Brunton NP, O’Donnell C, Tiwari BK (2010) Effect of thermal processing on anthocyanin stability in foods; mechanisms and kinetics of degradation. Trends Food Sci Technol 21:3–11

    Article  CAS  Google Scholar 

  51. Ducasse MA (2009) Impact des enzymes de macération sur la composition en polysaccharides et en polyphénols des vins rouges – étude de l’évolution de ces composés en solution modèle vin. Thèse de doctorat de l’université Montpellier II, Montpellier

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the society KSARA (Lebanon) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nada El Darra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

El Darra, N., Grimi, N., Maroun, R.G. et al. Pulsed electric field, ultrasound, and thermal pretreatments for better phenolic extraction during red fermentation. Eur Food Res Technol 236, 47–56 (2013). https://doi.org/10.1007/s00217-012-1858-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-012-1858-9

Keywords

Navigation