Skip to main content
Log in

Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

We describe a powerful type of vanillin electrochemical sensor based on a carbon paste electrode (CPE) modified with NiFe2O4 nanoparticle and 1-hexyl-3-methylimidazolium chloride (1H3MCl). The NiFe2O4 nanoparticle was synthesized by co-precipitation strategy and characterized by FESEM, XRD, and EDAX methods. The results revealed a spherical shape NiFe2O4 nanoparticle with diameter ~ 22 nm. The oxidation peak of vanillin was recorded at potentials + 690 and + 650 mV at the surface of CPE and NiFe2O4/1H3MCl/CPE by cyclic voltammetric method, respectively. The NiFe2O4/1H3MCl/CPE exhibited high electro-catalytic ability toward vanillin electro-oxidation and indicated two separated oxidation signals at potentials 640 and 1050 mV for vanillin and tryptophan by differential pulse voltammetric method. The sensitivity 0.1011 and 0.5058 μA µM−1 as well as the detection limits 1.0 nM and 0.09 µM were observed for determination of vanillin and tryptophan at the surface of NiFe2O4/1H3MCl/CPE, respectively. The NiFe2O4/1H3MCl/CPE was used as a food analytical sensor for determining vanillin and tryptophan in food samples such as coffee milk, chocolate, and biscuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. G. Banerjee, P. Chattopadhyay, J. Sci. Food Agric. 99(2), 499–506 (2019)

    Article  CAS  PubMed  Google Scholar 

  2. R. Haller, C. Rummel, S. Henneberg, U. Pollmer, E. Köster, Chem. Senses 24(4), 465 (1999)

    Article  CAS  PubMed  Google Scholar 

  3. F. Beaudry, A. Ross, P.P. Lema, P. Vachon, Phytother. Res. 24(4), 525–530 (2010)

    CAS  PubMed  Google Scholar 

  4. A. Al-mokbel, G. Courtney-Martin, R. Elango, R.O. Ball, P.B. Pencharz, C. Tomlinson, J. Nutr. 149(2), 280–285 (2019)

    Article  PubMed  Google Scholar 

  5. T. Herraiz, J. Galisteo, C. Chamorro, J. Agric. Food Chem. 51(8), 2168–2173 (2003)

    Article  CAS  PubMed  Google Scholar 

  6. S. Cheraghi, M.A. Taher, H. Karimi-Maleh, J. Food Compos. Anal. 62, 254–259 (2017)

    Article  CAS  Google Scholar 

  7. F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, H. Karimi-Maleh, Compos. Part B 172, 666–670 (2019)

    Article  CAS  Google Scholar 

  8. M.A. Khalilzadeh, Z. Arab, Curr. Anal. Chem. 13(1), 81–86 (2017)

    Article  CAS  Google Scholar 

  9. J. Peng, C. Hou, X. Hu, Int. J. Electrochem. Sci. 7(2), 1724–1733 (2012)

    CAS  Google Scholar 

  10. L. Jiang, Y. Ding, F. Jiang, L. Li, F. Mo, Anal. Chim. Acta 833, 22–28 (2014)

    Article  CAS  PubMed  Google Scholar 

  11. P. Deng, Z. Xu, R. Zeng, C. Ding, Food Chem. 180, 156–163 (2015)

    Article  CAS  PubMed  Google Scholar 

  12. M.L. Yola, N. Atar, Mater. Sci. Eng. C 96, 669–676 (2019)

    Article  CAS  Google Scholar 

  13. H. Yin, Y. Zhou, X. Meng, T. Tang, S. Ai, L. Zhu, Food Chem. 127(3), 1348–1353 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. A. Savk, B. Özdil, B. Demirkan, M.S. Nas, M.H. Calimli, M.H. Alma, A.M. Asiri, F. Şen, Mater. Sci. Eng. C 99, 248–254 (2019)

    Article  CAS  Google Scholar 

  15. B.J. Sanghavi, P.K. Kalambate, S.P. Karna, A.K. Srivastava, Talanta 120, 1–9 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. G.M. Durán, E.J. Llorent-Martínez, A.M. Contento, Á. Ríos, Microchim. Acta 185, 204 (2018)

    Article  Google Scholar 

  17. B. Demirkan, S. Bozkurt, A. Şavk, K. Cellat, F. Gülbağca, M. Salih Nas, M.H. Alma, F. Sen, Sci. Rep. 9, 1–9 (2019)

    Article  CAS  Google Scholar 

  18. H. Karimi-Maleh, O.A. Arotiba, J. Colloid Interface Sci. (2019). https://doi.org/10.1016/j.jcis.2019.10.007

    Article  PubMed  Google Scholar 

  19. R. Ayranci, B. Demirkan, B. Sen, A. Şavk, M. Ak, F. Şen, Mater. Sci. Eng. C 99, 951–956 (2019)

    Article  CAS  Google Scholar 

  20. Y. Ge, M.B. Camarada, L. Xu, M. Qu, H. Liang, E. Zhao, M. Li, Y. Wen, Microchim. Acta 185(12), 566 (2018)

    Article  Google Scholar 

  21. H. Karimi-Maleh, C.T. Fakude, N. Mabuba, G.M. Peleyeju, O.A. Arotiba, J. Colloid Interface Sci. 554, 603–610 (2019)

    Article  CAS  PubMed  Google Scholar 

  22. Y. Sheng, W. Qian, J. Huang, B. Wu, J. Yang, T. Xue, Y. Ge, Y. Wen, Microchim. Acta 186(8), 543 (2019)

    Article  Google Scholar 

  23. Z. Shamsadin-Azad, M.A. Taher, S. Cheraghi, H. Karimi-Maleh, J. Food Meas. Charact. 13, 1781–1787 (2019)

    Article  Google Scholar 

  24. F. Faridbod, A.L. Sanati, Curr. Anal. Chem. 15(2), 103–123 (2019)

    Article  CAS  Google Scholar 

  25. A.L. Sanati, F. Faridbod, Int. J. Electrochem. Sci. 12, 7997–8005 (2017)

    Article  CAS  Google Scholar 

  26. M. Abbasghorbani, J. Mol. Liq. 266, 176–180 (2018)

    Article  CAS  Google Scholar 

  27. M. Abbasghorbani, Int. J. Electrochem. Sci. 12, 11656–11665 (2017)

    Article  CAS  Google Scholar 

  28. F. Misaghpour, M. Shabani-Nooshabadi, Food Anal. Methods 11(3), 646–653 (2018)

    Article  Google Scholar 

  29. A. Jafari-Kashi, M. Shabani-Nooshabadi, Anal. Bioanal. Electrochem. 10(8), 1016–1030 (2018)

    CAS  Google Scholar 

  30. H. Ahmar, S.K. Shahvandi, Electroanalysis 31, 1238–1244 (2019)

    Article  CAS  Google Scholar 

  31. S. Shahraki, H. Ahmar, M. Nejati-Yazdinejad, Microchem. J. 142, 229–235 (2018)

    Article  CAS  Google Scholar 

  32. F. Tahernejad-Javazmi, M. Shabani-Nooshabadi, J. Electrochem. Soc. 164(13), H975–H980 (2017)

    Article  CAS  Google Scholar 

  33. A.O. Idris, N. Mabuba, D. Nkosi, N. Maxakato, O.A. Arotiba, Int. J. Environ. Anal. Chem. 97(6), 534–547 (2017)

    Article  CAS  Google Scholar 

  34. M. Fouladgar, J. Electrochem. Soc. 165(13), B559–B564 (2018)

    Article  CAS  Google Scholar 

  35. C.T. Fakude, O.A. Arotiba, R. Moutloali, N. Mabuba, Int. J. Electrochem. Sci. 14, 9391–9403 (2019)

    Article  CAS  Google Scholar 

  36. M. Bijad, H. Karimi-Maleh, M. Farsi, S.-A. Shahidi, J. Food Meas. Charact. 12(1), 634–640 (2018)

    Article  Google Scholar 

  37. A. Khodadadi, E. Faghih-Mirzaei, H. Karimi-Maleh, A. Abbaspourrad, S. Agarwal, V.K. Gupta, Sens. Actuators B 284, 568–574 (2019)

    Article  CAS  Google Scholar 

  38. S. Jahandari, M.A. Taher, H. Karimi-Maleh, A. Khodadadi, E. Faghih-Mirzaei, J. Electroanal. Chem. 840, 313–318 (2019)

    Article  CAS  Google Scholar 

  39. S. Salmanpour, M.A. Khalilzadeh, H. Karimi-Maleh, D. Zareyeea, Int. J. Electrochem. Sci. 14, 9552–9561 (2019)

    Article  CAS  Google Scholar 

  40. H. Karimi-Maleh, M. Sheikhshoaie, I. Sheikhshoaie, M. Ranjbar, J. Alizadeh, N.W. Maxakato, A. Abbaspourrad, New J. Chem. 43(5), 2362–2367 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seyed-Ahmad Shahidi or Hassan Karimi-Maleh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zabihpour, T., Shahidi, SA., Karimi-Maleh, H. et al. Voltammetric food analytical sensor for determining vanillin based on amplified NiFe2O4 nanoparticle/ionic liquid sensor. Food Measure 14, 1039–1045 (2020). https://doi.org/10.1007/s11694-019-00353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-019-00353-8

Keywords

Navigation