Skip to main content
Log in

Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A voltammetric analytical assay for the selective quantification of vanillin is described. It is based on the use of a gold nanoparticle-modified screen-printed carbon electrode (SPCE) modified with graphene quantum dots (GQD) in a Nafion matrix. The GQD were synthesized by an acidic thermal method and characterized by UV-Vis, photoluminescence, and FTIR spectroscopy. The modified SPCE displays a strongly enhanced response to vanillin. Linear sweep voltammetry (LSV) and differential pulse voltammetry (DPV) were applied to optimize the methods. The analytical assay has linear responses in the 13 to 660 μM and 0.66 to 33 μM vanillin concentration ranges. The detection limits are 3.9 μM and 0.32 μM when using LSV and DPV, respectively. The analytical assay is selective and stable. It was applied to the determination of vanillin in several food samples with satisfactory results. Recoveries from spiked samples ranged between 92.1 and 113.0%.

The selective and sensitive quantification of vanillin is carried out by the use of a gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots in a Nafion matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Jubete E, Loaiza OA, Ochoteco E, Pomposo JA, Grande H, Rodríguez J (2009) Nanotechnology: a tool for improved performance on electrochemical screen-printed (bio)sensors. J Sens. https://doi.org/10.1155/2009/842575

  2. Buleandra M, Rabinca AA, Tache F, Moldovan Z, Stamatin I, Mihailciuc C, Ciucu AA (2017) Rapid voltammetric detection of kojic acid at a multi-walled carbon nanotubes screen-printed electrode. Sensors Actuators B Chem 241:406–412

    Article  CAS  Google Scholar 

  3. Punrat E, Maksuk C, Chuanuwatanakul S, Wonsawat W, Chailapakul O (2016) Polyaniline/graphene quantum dot-modified screen-printed carbon electrode for the rapid determination of Cr(VI) using stopped-flow analysis coupled with voltammetric technique. Talanta 150:198–205

    Article  CAS  Google Scholar 

  4. Shen JH, Zhu YH, Yang XL, Li CH (2012) Graphene quantum dots: emergent nanolights for bioimaging, sensors, catalysis and photovoltaic devices. Chem Commun 48:3686–3699

    Article  CAS  Google Scholar 

  5. Zhu SJ, Tang SJ, Zhang JH, Yang B (2012) Control the size and surface chemistry of graphene for the rising fluorescent materials. Chem Commun 48:4527–4539

    Article  CAS  Google Scholar 

  6. Duran GM, Benavidez TE, Contento AM, Ríos A, Garcia CD (2017) Analysis of Penicillamine using cu-modified graphene quantum dots synthetized from uric acid as single precursor. J Pharm Anal 7:324–331

    Article  Google Scholar 

  7. Lim CS, Hola K, Ambrosi A, Zboril R, Pumera M (2015) Graphene and carbon quantum dots electrochemistry. Electrochem Commun 52:75–79

    Article  CAS  Google Scholar 

  8. Pang P, Yan F, Li H, Li H, Zhang Y, Wang H, Wu Z, Yang W (2016) Graphene quantum dots and Nafion composite as an ultrasensitive electrochemical sensor for the detection of dopamine. Anal Methods 8:4912–4918

    Article  CAS  Google Scholar 

  9. Ramachandra Rao S, Ravishankar GA (2000) Vanilla flavour: production by conventional and biotechnological routes. J Sci Food Agric 80:289–304

    Article  Google Scholar 

  10. Durán GM, Contento AM, Ríos A (2015) β-Cyclodextrin coated CdSe/ZnS quantum dots for vanillin sensoring in food samples. Talanta 131:286–291

    Article  Google Scholar 

  11. Ni Y, Zhang G, Kokot S (2005) Simultaneous spectrophotometric determination of maltol, ethyl maltol, vanillin and ethyl vanillin in foods by multivariate calibration and artificial neural networks. Food Chem 89:465–473

    Article  CAS  Google Scholar 

  12. Pyell U, Pletsch-Viehmann B, Ramus U (2002) Component analysis of vanilla extracts and vanilla containing commercial preparations by micellar electrokinetic chromatography or high-performance liquid chromatography – a method comparison. J Sep Sci 25:1035–1042

    Article  CAS  Google Scholar 

  13. Ohashi M, Omae H, Hashida M, Sowa Y, Imai S (2007) Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis. J Chromatogr A 1138:262–267

    Article  CAS  Google Scholar 

  14. Perez-Silva A, Odoux E, Brat P, Ribeyre F, Rodriguez-Jimenes G, Robles-Olvera V (2006) GC–MS and GC–olfactometry analysis of aroma compounds in a representative organic aroma extract from cured vanilla (Vanilla Planifolia G. Jackson) beans. Food Chem 99:728–735

    Article  CAS  Google Scholar 

  15. Liu Y, Liang Y, Lian H, Zhang C, Peng J (2015) Sensitive Voltammetric determination of vanillin with an electrolytic manganese dioxide−graphene composite modified electrode. Int J Electrochem Sci 10:4129–4137

    CAS  Google Scholar 

  16. Huang L, Hou K, Jia X, Pan H, Du M (2014) Preparation of novel silver nanoplates/graphene composite and their application in vanillin electrochemical detection. Mater Sci Eng C 38:39–45

    Article  CAS  Google Scholar 

  17. Bettazzi F, Palchetti I, Sisalli S, Mascini M (2006) A disposable electrochemical sensor for vanillin detection. Anal Chim Acta 555:134–138

    Article  CAS  Google Scholar 

  18. Silva TR, Brondani D, Zapp E, Vieira IC (2015) Electrochemical sensor based on gold nanoparticles stabilized in poly(Allylamine hydrochloride) for determination of vanillin. Electroanalysis 27:465–472

    Article  CAS  Google Scholar 

  19. Gao F, Cai X, Wang X, Gao C, Liu S, Gao F, Wang Q (2013) Highly sensitive and selective detection of dopamine in the presence of ascorbic acid at graphene oxide modified electrode. Sensors Actuators B Chem 186:380–387

    Article  CAS  Google Scholar 

  20. Yanga S, Lia G, Yinb Y, Yangb R, Lib J, Qu L (2013) Nano-sized copper oxide/multi-wall carbon nanotube/Nafion modified electrode for sensitive detection of dopamine. J Electroanal Chem 703:45–51

    Article  Google Scholar 

  21. Yardım Y, Gülcan M, Şentürk Z (2013) Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode. Food Chem 141:1821–1827

    Article  Google Scholar 

  22. Zhao Y, Du Y, Lu D, Wang L, Ju DMT, Wu M (2014) Sensitive determination of vanillin based on an arginine functionalized graphene film. Anal Methods 6:1753–1758

    Article  CAS  Google Scholar 

  23. Wu W, Wang H, Yang L, Zhao F, Zeng B (2016) Sensitively Voltammetric determination of vanillin with a molecularly imprinted ionic liquid polymer-carboxyl SingleWalled carbon nanotubes composite electrode. Int J Electrochem Sci 11:6009–6022

    Article  CAS  Google Scholar 

  24. Shang L, Zhao FQ, Zeng BZ (2014) Sensitive voltammeric determination of vanillin with an AuPd nanoparticles-graphene composie modified electrode. Food Chem 151:53–57

    Article  CAS  Google Scholar 

  25. Deng P, Xu Z, Zeng R, Ding C (2015) Electrochemical behavior and voltammetric determination of vanillin based on an acetylene black paste electrode modified with graphene-polyvinylpyrrolidone composite film. Food Chem 180:156–163

    Article  CAS  Google Scholar 

  26. Kalaiyarasi J, Meenakshi S, Pandian K, Gopinath SCB (2017) Simultaneous voltammetric determination of vanillin and guaiacol in food products on defect free graphene nanoflakes modified glassy carbon electrode. Microchim Acta 184:2131–2140

    Article  CAS  Google Scholar 

  27. Sivakumar M, Sakthivel M, Chen S-M (2017) Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples. J Colloid Interface Sci 490:719–726

    Article  CAS  Google Scholar 

  28. Waliszewski KN, Pardio VT, Ovando SL (2006) A simple and rapid HPLC technique for vanillin determination in alcohol extract. Food Chem 101:1059–1062

    Article  Google Scholar 

  29. González AG, Herrador MA, Asuero AG (1999) Intra-laboratory testing of method accuracy from recovery assays. Talanta 48:729–736

    Article  Google Scholar 

Download references

Acknowledgments

The Spanish Ministry of Economy and Competitiveness (MINECO) is gratefully acknowledged for funding this work with Grant CTQ2016-78793-P. E.J. Llorent-Martínez acknowledges the financial support from the UCLM Research Plan. Gema M. Durán also acknowledges the financial support from the JCCM research contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel Ríos.

Ethics declarations

The author(s) declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOCX 767 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durán, G.M., Llorent-Martínez, E.J., Contento, A.M. et al. Determination of vanillin by using gold nanoparticle-modified screen-printed carbon electrode modified with graphene quantum dots and Nafion. Microchim Acta 185, 204 (2018). https://doi.org/10.1007/s00604-018-2738-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00604-018-2738-1

Keywords

Navigation