Skip to main content
Log in

Organic Acid, Phenolic Compound and Antioxidant Contents of Fresh and Dried Fruits of Pear (Pyrus Communis L.) Cultivars

  • Original Article / Originalbeitrag
  • Published:
Erwerbs-Obstbau Aims and scope Submit manuscript

Abstract

This study was conducted to determine the yield and physicochemical properties as well as the phenolic compounds, organic acids, antioxidant activity, proteins, and sugars in fresh and dried fruit samples of ‘Carmen’, ‘Etrusca’, ‘Santa Maria’, and ‘Williams’ cultivars, which have an important place in Turkish pear cultivation. Yields of cultivars varied between 12.28 and 23.09 kg/tree, while firmness varied between 4.45 and 9.42 kg, the number of seeds between 7.10 and 9.37 pieces, the amount of soluble solids between 12.22 and 13.40%, the fruit juice pH value between 3.51 and 7.01 and titratable acidity between 0.17 and 0.34%. Chlorogenic acid was found to be the primary phenolic compound in fresh and dried fruit samples, followed by syringic acid. The amount of chlorogenic acid was between 191.56 and 286.58 mg/100 g in fresh fruit samples and between 286.29 and 376.41 mg/100 g in dried fruit samples. It was determined that dried fruit samples had higher phenolic content than fresh fruit samples. The primary organic acid in the fresh and dried fruit samples was malic acid, followed by succinic acid, citric acid, tartaric acid, and fumaric acid. The amount of malic acid was determined between 2213.26 and 34.35.33 mg/100 g and 3070.84 and 5352.79 mg/100 g in fresh and dried fruit samples, respectively. Fresh fruit samples were found to be relatively low in terms of organic acid content compared to dried fruit samples. Glucose and fructose were dominant in both fresh and dried fruit samples. The amount of glucose was determined as 24.07–58.79 mg/kg in fresh samples and 41.30–127.19 mg/kg in dried samples. Antioxidant activity, protein, and vitamin C were higher in dried fruit samples. The antioxidant content varied between 31.74% and 66.55%, and the amount of vitamin C increased significantly with the drying of the samples. The results revealed that drying is preferable for consuming polyphenol-rich pears in the diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Altaf A, Zhu M, Zhu X, Saeed A, Aleem M, Gull S, Hussain S, Masoom A, Quan M (2020) Study of the drying behavior of solar dryer and proximate analysis of the dried pear (Pyrus communis) and peach (Prunus persica). PAKJAS. https://doi.org/10.21162/PAKJAS/20.821

    Article  Google Scholar 

  • AOAC (1999) Official methods of analysis, 16th edn. Association of Official Analytical Chemists, Arlington

    Google Scholar 

  • Benvenuti S, Pellati F, Melegari MA, Bertelli D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Science 69(3):FCT164–FCT169. https://doi.org/10.1111/j.1365-2621.2004.tb13352.x

    Article  CAS  Google Scholar 

  • Bevilacqua AE, Califano AN (1989) Determination of organic acids in dairy products by high performance liquid chromatography. J Food Science 54:1076–1079. https://doi.org/10.1111/j.1365-2621.1989.tb07948.x

    Article  CAS  Google Scholar 

  • Bhandari B (2015) Handbook of industrial drying. CRC Press, Boca Raton https://doi.org/10.1080/07373937.2014.983704. ISBN 978-1-4665-9665‑8.

    Book  Google Scholar 

  • Cemeroğlu B, Yemenicioğlu A, Özkan M (2004) Meyve ve sebzelerin bileşimi. Meyve Sebze Işleme Teknol 1:1–188

    Google Scholar 

  • Chang CH, Lin HY, Chang CY, Liu YC (2006) Comparisons on the antioxidant properties of fresh, freeze-dried and hot-air-dried tomatoes. J Food Eng 77(3):478–485

    Article  CAS  Google Scholar 

  • Chen J, Wang Z, Wu J, Wang Q, Hu X (2007) Chemical compositional characterization of eight pear cultivars grown in China. Food Chem 104(1):268–275. https://doi.org/10.1016/j.foodchem.2006.11.038

    Article  CAS  Google Scholar 

  • Chong CH, Law CL, Figiel A, Wojdylo A, Oziemblowski M (2013) Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem 141:3889–3896

    Article  CAS  PubMed  Google Scholar 

  • Colaric M, Stampar F, Solar A, Hudina M (2006) Influence of branch bending on sugar, organic acid and phenolic content in fruits of ‘Williams’ pears (Pyrus communis L.). J Sci Food Agric 86(14):2463–2467

    Article  CAS  Google Scholar 

  • Delgado T, Ramalhosa E, Pereira JA, Casal S (2018) Organic acid profile of chestnut (Castanea sativa Mill.) as affected by hot air convective drying: Drying influence on chestnut organic acids. Int J Food Prop 21(1):557–565

    Article  CAS  Google Scholar 

  • Denizli Directorate of Agriculture and Forestry. (2022). Toprak Haritaları. T.R. Ministry of Agriculture and Forestry. https://denizli.tarimorman.gov.tr/Menu/16/Toprak-Haritalari. Accessed 23 July 2022

  • Domínguez-Niño A, Salgado-Sandoval O, López-Vidaña EC, César-Munguía AL, Pilatowsky-Figueroa I, García-Valladares O (2021) Influence of process variables on the drying kinetics and color properties of pear slices (Pyrus communis). Color Res Appl 46(5):1128–1141

    Article  Google Scholar 

  • Dorta E, Lobo MG, González M (2012) Using drying treatments to stabilise mango peel and seed: effect on antioxidant activity. LWT Food Sci Technol 45(2):261–268

    Article  CAS  Google Scholar 

  • Ekici İ, Yıldırım AN (2017) Determination of (Pyrus pyrifolia) morphological, phenological, pomological and some biochemical properties of asian pear cultivars in Uşak ecological conditions. J Suleyman Demirel Univ Inst Sci Technol 21(1):118–124. https://doi.org/10.19113/sdufbed.15491

    Article  Google Scholar 

  • Etienne A, Génard M, Lobit P, Mbeguié-A-Mbéguié D, Bugaud C (2013) What controls fleshy fruit acidity? A review of malate and citrate accumulation in fruit cells. J Exp Bot 64(6):1451–1469

    Article  CAS  PubMed  Google Scholar 

  • FAO (2022) Report of FAO on the harvested area and yield of pear. http://www.fao.org/faostat. Accessed 17 May 2022

  • Fu L, Yang J, Shang H, Song J (2021) Changes of characteristic sugar, fatty acid, organic acid and amino acid in jujubes at different dry mature stages. J Food Compos Analysis 104:104104

    Article  CAS  Google Scholar 

  • Gao QH, Wu CS, Wang M, Xu BN, Du LJ (2012) Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, α‑tocopherol, β‑carotene, and phenolic compounds. J Agric Food Chem 60(38):9642–9648

    Article  CAS  PubMed  Google Scholar 

  • Gebczynski P, Skoczeń-Słupska R, Kur K (2017) Effect of storage on the content of selected antioxidants and quality atributes in convection and freeze-dried pears (Pyrus communis L.). Italian J Food Sci. https://doi.org/10.14674/IJFS-697

    Article  Google Scholar 

  • Guiné RPF, Barroca MJ, Gonçalves FJ, Alves M, Oliveira S, Correia PMR (2015) Effect of drying on total phenolic compounds, antioxidant activity, and kinetics decay in pears. Int J Fruit Sci 15:173–186

    Article  Google Scholar 

  • Hudina M, Štampar F (2005) The correlation of the pear (Pyrus communis L.) cv. ‘Williams’ yield quality to the foliar nutrition and water regime. Acta Agric Slovenica 85(2):179–185

    Google Scholar 

  • Hussain SZ, Naseer B, Qadri T, Fatima T, Bhat TA (2021) Pear (pyrus communis)-morphology, taxonomy, composition and health benefits. In: Fruits grown in highland regions of the himalayas. Springer, Cham, pp 35–48 https://doi.org/10.1007/978-3-030-75502-7_3

    Chapter  Google Scholar 

  • Igwilo IO, Iwualla LC, Igwilo SN, Agbara AC, Okpala CO, Ezeigwe CO (2018) Proximate analysis and phytochemical composition of fresh and dried fruit of Morinda Lucida. Biosci J 6(1):31–39

    Google Scholar 

  • Isabelle M, Lee BL, Lim MT, Koh WP, Huang D, Ong CN (2010) Antioxidant activity and profiles of common fruits in Singapore. Food Chem 123:77–84. https://doi.org/10.1016/j.foodchem.2010.04.002

    Article  CAS  Google Scholar 

  • Izli N, Yıldız G, Ünal H, Işık E, Uylaşer V (2014) Effect of different drying methods on drying characteristics, colour, total phenolic content and antioxidant capacity of Goldenberry (Physalis peruviana L.). Int J Food Sci Technol 49(1):9–17

    Article  CAS  Google Scholar 

  • Karaçalı İ (2009) Bahçe Ürünlerinin Muhafaza ve Pazarlanması. Ege Üniversitesi Ziraat Fakültesi Yayınları, No: 494. Ege Üniversitesi Basımevi, İzmir, p 472

    Google Scholar 

  • Kivrak I, Duru ME, Öztürk M, Mercan N, Harmandar M, Topçu G (2009) Antioxidant, anticholinesterase and antimicrobial constituents from the essential oil and ethanol extract of Salvia potentillifolia. Food Chem 116(2):470–479

    Article  CAS  Google Scholar 

  • Kolniak-Ostek J (2016) Chemical composition and antioxidant capacity of different anatomical parts of pear (Pyrus communis L.). Food Chem 203:491–497. https://doi.org/10.1016/j.foodchem.2016.02.103

    Article  CAS  PubMed  Google Scholar 

  • Kumaran A, Karunakaran RJ (2007) In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWT Food Sci Technol 40(2):344–352. https://doi.org/10.1016/j.lwt.2005.09.011

    Article  CAS  Google Scholar 

  • Li X, Wang T, Zhou B, Gao W, Cao J, Huang L (2014) Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.). Food Chem 152:531–538. https://doi.org/10.1016/j.foodchem.2013.12.010

    Article  CAS  PubMed  Google Scholar 

  • Lutz M, Hernández J, Henríquez C (2015) Phenolic content and antioxidant capacity in fresh and dry fruits and vegetables grown in Chile. CyTA J Food 13(4):541–547

    CAS  Google Scholar 

  • Macedo LL, Vimercati WC, da Silva AC, Saraiva SH, Teixeira LJQ (2020) Effect of drying air temperature on drying kinetics and physicochemical characteristics of dried banana. J Food Process Eng 43(9):e13451

    Article  CAS  Google Scholar 

  • Marfil PHM, Santos EM, Telis VRN (2008) Ascorbic acid degradation kinetics in tomatoes at different drying conditions. LWT Food Sci Technol 41(9):1642–1647

    Article  CAS  Google Scholar 

  • Melgarejo P, Salazar DM, Artes F (2000) Organic acids and sugars composition of harvested pomegranate fruits. Eur Food Res Technol 211(3):185–190. https://doi.org/10.1007/s002170050021

    Article  CAS  Google Scholar 

  • Morgan J (2015) The book of pears: the definitive history and guide to over 500 varieties. Chelsea Green Publishing

    Google Scholar 

  • Nazir N, Nisar S, Mubarek S, Khalil A, Javeed K, Banerjee S, Kour J, Nayik GA (2020) Pear. In: Nayik GA, Gull A (eds) Antioxidants in fruits: properties and health benefits. Springer, Berlin Heidelberg https://doi.org/10.1007/978-981-15-7285-2_22

    Chapter  Google Scholar 

  • Nour V, Trandafr I, Ionica ME (2010) Compositional characteristics of fruits of several apple (Malus domestica Borkh.) cultivars. Natulae Bot Horti Agrobot Cluj Napoca 39(3):228–233. https://doi.org/10.15835/nbha3834762

    Article  Google Scholar 

  • Rodríguez-Delgado MA, Malovaná S, Pérez JP, Borges T, García Montelongo FJ (2001) Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J Chromatogr A 912(2):249-257. https://doi.org/10.1016/S0021-9673(01)00598-2

    Article  PubMed  Google Scholar 

  • Santos PHS, Silva MA (2008) Retention of vitamin C in drying processes of fruits and vegetables—A review. Dry Technol 26(12):1421–1437

    Article  CAS  Google Scholar 

  • Santos SCRVL, Guine RPF, Barros A (2014) Effect of drying temperatures on the phenolic composition and antioxidant activity of pears of Rocha variety (Pyrus communis L.). Food Meas 8:105–112

    Article  Google Scholar 

  • da Silva DI, Nogueira GD, Duzzioni AG, Barrozo MA (2013) Changes of antioxidant constituents in pineapple (Ananas comosus) residue during drying process. Ind Crops Prod 50:557–562

    Article  Google Scholar 

  • da Silva GJ, Villa F, Grimaldi F, Da Silva PS, Welter JF (2018) Pear (Pyrus spp.) breeding. In: Al-Khayri JM et al (ed) Advances in Plant Breeding Strategies: Fruits. Springer, Cham, pp 131–163

    Chapter  Google Scholar 

  • Topuz CF, Bakkalbaşı E, Aldemir A, Javidipour I (2022) Drying kinetics and quality properties of Mellaki (Pyrus communis L.) pear slices dried in a novel vacuum-combined infrared oven. J Food Process Preserv. https://doi.org/10.1111/jfpp.16866

    Article  Google Scholar 

  • Triantis T, Stelakis A, Dimotikali D, Papadopoulos K (2005) Investigations on the antioxidant activity of fruit and vegetable aqueous extracts on superoxide radical anion using chemiluminescence techniques. Anal Chim Acta 536(1–2):101–105

    Article  CAS  Google Scholar 

  • Tülek Y, Demiray E (2014) Effect of hot air drying and different pretreatments on color and drying characteristics of persimmons. J Agric Sci 20(1):27–37. https://doi.org/10.15832/tbd.11768

    Article  Google Scholar 

  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. 2nd ed. Springer. https://doi.org/10.1007/978-3-319-24277-4

    Book  Google Scholar 

  • Wu J, Fan J, Li Q, Jia L, Xu L, Wu X, Yin H (2022) Variation of organic acids in mature fruits of 193 pear (Pyrus spp.) cultivars. J Food Compos Anal 109:104483

    Article  CAS  Google Scholar 

  • Yi J, Zhou L, Bi J, Chen Q, Liu X, Wu X (2016) Impacts of pre-drying methods on physicochemical characteristics, Color, Texture, volume ratio, microstructure and rehydration of explosion puffing dried pear chips. J Food Process Preserv 40(5):863–873. https://doi.org/10.1111/JFPP.12664

    Article  CAS  Google Scholar 

  • Zou K, Teng J, Huang L, Dai X, Wei B (2013) Effect of osmotic pretreatment on quality of mango chips by explosion puffing drying. LWT Food Sci Technol 51:253–259. https://doi.org/10.1016/j.lwt.2012.11.005

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Levent Kirca and Ahmet Aygün conceived the research. Levent Kirca and Semanur Kirca collected samples and performed the review. Levent Kirca, Semanur Kirca and Ahmet Aygün analysed data. Levent Kirca and Ahmet Aygün wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Levent Kırca.

Ethics declarations

Conflict of interest

L. Kırca, S. Kırca, and A. Aygün declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kırca, L., Kırca, S. & Aygün, A. Organic Acid, Phenolic Compound and Antioxidant Contents of Fresh and Dried Fruits of Pear (Pyrus Communis L.) Cultivars. Erwerbs-Obstbau 65, 677–691 (2023). https://doi.org/10.1007/s10341-022-00760-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10341-022-00760-0

Keywords

Navigation