Skip to main content
Log in

Combining ectomycorrhizal fungi and plant growth-promoting rhizobacteria to enhance salt tolerance of Metasequoia glyptostroboides

  • Original Article
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Plant growth and productivity are negatively affected by soil salinity. This study investigated the effects of the rhizosphere-promoting bacterium, Bacillus paramycoides JYZ-SD5, and the ectomycorrhizal fungus, Schizophyllum commune Be, on the growth of Metasequoia glyptostroboides under salt stress. Changes in biomass, root growth, root ion distribution and in vivo enzyme activities were determined under different treatments (Be, JYZ-SD5, and Be + JYZ-SD5). The results show that all inoculations increased chlorophyll content, shoot length and root diameter with or without salt stress, and the effect of Be + JYZ-SD5 was the strongest. JYZ-SD5 and Be + JYZ-SD5 treatments significantly increased root length, surface area, bifurcation number, tip number, main root length and diameter under salt stress. Normal chloroplast structures developed under both single and double inoculations. Relative to the control, root activities of M. glyptostroboides in the Be, JYZ-SD5, and Be + JYZ-SD5 treatments increased by 31.3%, 17.2%, and 33.7%. All treatments increased the activities of superoxide dismutase (SOD), peroxidase (POD), Na+–K+-ATPase and Ca2+–Mg2+-ATPase. The strongest effect was by Be + JYZ-SD5. Analysis of root ion distribution showed that, under salt stress, Na+ and K+ decreased and were concentrated in the epidermis or cortex. Na/K ratios also decreased. The Be + JYZ-SD5 treatment increased betaine by 130.3% and 97.9% under 50 mM and 100 mM salt stress, respectively. Together, these changes result in the activation of physiological and biochemical processes involved in the mitigation of salinity-induced stress in M. glyptostroboides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • AbdElgawad H, ElSawah AM, Mohammed AE, Alotaibi MO, Yehia RS, Selim S, Saleh AM, Beemster G, Sheteiwy MS (2022) Increasing atmospheric CO2 differentially supports arsenate stress mitigating impact of arbuscular mycorrhizal fungi in wheat and soybean plants. Chemosphere 296:134044. https://doi.org/10.1016/j.chemosphere.2022.134044

    Article  CAS  PubMed  Google Scholar 

  • Alexander A, Singh VK, Mishra A (2020) Halotolerant PGPR Stenotrophomonas maltophilia BJ01 induces salt tolerance by modulating physiology and biochemical activities of Arachis hypogaea. Front Microbiol 11:568289. https://doi.org/10.3389/fmicb.2020.568289

    Article  PubMed  PubMed Central  Google Scholar 

  • Alotaibi MO, Saleh AM, Sobrinho RL, Sheteiwy MS, ElSawah AM, Mohammed AE, AbdElgawad H (2021) Arbuscular mycorrhizae mitigate aluminum toxicity and regulate proline metabolism in plants grown in acidic soil. J Fungi 7(7):531–531

    Article  CAS  Google Scholar 

  • Barra PJ, Inostroza NG, Mora ML, Crowley DE, Jorquera MA (2017) Bacterial consortia inoculation mitigates the water shortage and salt stress in an avocado (Persea americana Mill.) nursery. Appl Soil Ecol 111:39–47

    Article  Google Scholar 

  • Bois G, Bertrand A, Piché Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109

    Article  CAS  PubMed  Google Scholar 

  • Calvo-Polanco M, Zwiazek JJ (2011) Role of osmotic stress in ion accumulation and physiological responses of mycorrhizal white spruce (Picea glauca) and jack pine (Pinus banksiana) to soil fluoride and NaCl. Acta Physiol Plant 33:1365–1373

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Zwiazek JJ, Jones MD, MacKinnon MD (2009) Effects of NaCl on responses of ectomycorrhizal black spruce (Picea mariana), white spruce (Picea glauca) and jack pine (Pinus banksiana) to fluoride. Physiol Plantarum 135:51–61

    Article  CAS  Google Scholar 

  • Chang P, Gerhardt KE, Huang X, Yu X, Glick BR, Gerwing PD, Greenberg BM (2014) Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils. Int J Phytoremediat 16:1133–1147

    Article  CAS  Google Scholar 

  • Diagne N, Ndour M, Djighaly PI, Ngom D, Ngom MN, Ndong G, Svistoonoff S, Cherif SH (2020) Effect of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on salt stress tolerance of Casuarina obesa (Miq). Front Sustain Food Syst 4:601004. https://doi.org/10.3389/FSUFS.2020.601004

    Article  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Penny MYC, Bhalerao R, Bennett MJ, Dinneny JR, Sveriges L (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25:324–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Sawah AM, El Keblawy A, Ali DI, Ibrahim HM, ElSheikh MA, Sharma A, Alhaj HY, Shaghaleh H, Brestic M, Skalicky M, Xiong YC, Sheteiwy MS (2021) Arbuscular mycorrhizal fungi and plant growth-promoting rhizobacteria enhance soil key enzymes, plant growth, seed yield, and qualitative attributes of guar. Agriculture 11(3):194

    Article  Google Scholar 

  • Evans MJ, Choi W, Gilroy S, Morris RJ (2016) A ROS-assisted calcium wave dependent on the AtRBOHD NADPH oxidase and TPC1 cation channel propagates the systemic response to salt stress. Plant Physiol 171:1771–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu QQ, Tan YZ, Zhai H, Du YP (2018) Effects of salt stress on the generation and scavenging of reactive oxygen species in leaves of grape strains with different salt tolerance. Acta Horticulturae Sinica 45:30–40

    Google Scholar 

  • Guo Y, Wang XJ, Li XL, Xu MG, Li Y, Zheng HN, Luo YM, Pete SMITH (2021) Impacts of land use and salinization on soil inorganic and organic carbon in the middle-lower yellow river delta. Pedosphere 31(6):839–848

    Article  CAS  Google Scholar 

  • Hortal S, Plett KL, Plett JM, Cresswell T, Johansen M, Pendall E, Anderson IC (2017) Role of plant-fungal nutrient trading and host control in determining the competitive success of ectomycorrhizal fungi. ISME J 11:2666–2676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim HM, El- Sawah AM (2022) The mode of integration between azotobacter and rhizobium affect plant growth, yield, and physiological responses of pea (Pisum sativum L.). J Plant Nutr Soil Sci 22:1238–1251

    Article  CAS  Google Scholar 

  • Ji J, Yuan D, Jin C, Wang G, Li XZ, Guan CF (2020) Enhancement of growth and salt tolerance of rice seedlings (Oryza sativa L.) by regulating ethylene production with a novel halotolerant PGPR strain Glutamicibacter sp. YD01 containing ACC deaminase activity. Acta Physiol Plant 42(6):427–436

    Google Scholar 

  • Lavini A, Pulvento C, D"Andria R, Riccardi M, Choukr-Allah R, Belhabib O (2014) Quinoa’s potential in the mediterranean region. J Agron Crop Sci 200:344–360

    Article  CAS  Google Scholar 

  • Li PS, Kong WL, Wu XQ, Zhang Y (2021a) Volatile organic compounds of the plant growth-promoting rhizobacteria JZ-GX1 enhanced the tolerance of Robinia pseudoacacia to salt stress. Front Plant Sci 12:753332. https://doi.org/10.3389/FPLS.2021.753332

    Article  PubMed  PubMed Central  Google Scholar 

  • Li PS, Kong WL, Wu XQ (2021b) Salt tolerance mechanism of the rhizosphere bacterium JZ-GX1 and its effects on tomato seed germination and seedling growth. Front Microbiol 12:657238. https://doi.org/10.3389/FMICB.2021.657238

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu CY, Yan M, Huang XB, Yuan ZH (2018) Effects of salt stress on growth and physiological characteristics of pomegranate (Punica Granatum L.) cuttings. Pak J Bot 50:457–464

    CAS  Google Scholar 

  • Ma L, Xie XR, Liu JR, Liu TJ, Liu YK, Lu JN (2016) Research progress of glycine betaine in plant stress resistance and its application in turfgrass. Acta Agrestia Sinica 24:947–952

    Google Scholar 

  • Man JG, Shi Y, Yu ZW, Zhang YL (2016) Root growth, soil water variation, and grain yield response of winter wheat to supplemental irrigation. Plant Prod Sci 19(2):193–205

    Article  CAS  Google Scholar 

  • Mao PL, Zhang YJ, Cao BG, Guo LM, Shao HB, Cao ZY, Jiang QK, Wang X (2016) Effects of salt stress on eco-physiological characteristics in Robinia pseudoacacia based on salt-soil rhizosphere. Sci Total Environ 568:118–123

    Article  CAS  PubMed  Google Scholar 

  • Naseer M, Zhu Y, Li FM, Yang YM, Wang S, Xiong YC (2022) Nano-enabled improvements of growth and colonization rate in wheat inoculated with arbuscular mycorrhizal fungi. Environ Pollut 295:118724–118724

    Article  CAS  PubMed  Google Scholar 

  • Nehnevajova E, Lyubenova L, Herzig R, Schröder P, Schwitzguébel J, Schmülling T (2012) Metal accumulation and response of antioxidant enzymes in seedlings and adult sunflower mutants with improved metal removal traits on a metal contaminated soil. Environ Exp Bot 76:39–48

    Article  CAS  Google Scholar 

  • Nguyen H, Calvo PM, Zwiazek JJ (2006) Gas exchange and growth responses of ectomycorrhizal Picea mariana, Picea glauca, and Pinus banksiana seedlings to NaCl and Na2SO4. Plant Biol 8:646–652

    Article  CAS  PubMed  Google Scholar 

  • Petronini PG, De Angelis EM, Borghetti P, Borghetti AF, Wheeler KP (1992) Modulation by betaine of cellular responses to osmotic stress. Biochem J 282:69–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren AT, Mickan BS, Li JY, Zhou R, Zhang XC, Ma MS, Wesly K, Xiong YC (2020) Soil labile organic carbon sequestration is tightly correlated with the abundance and diversity of arbuscular mycorrhizal fungi in semiarid maize fields. Land Degrad Dev 32(3):1224–1236

    Article  Google Scholar 

  • Robin AHK, Matthew C, Uddin MJ, Bayazid KN (2016) Salinity-induced reduction in root surface area and changes in major root and shoot traits at the phytomer level in wheat. J Exp Bot 67:3719–3729

    Article  CAS  PubMed  Google Scholar 

  • Sheteiwy MS, Shao HB, Qi WC, Daly P, Sharma A, Shaghaleh H, Alhaj HY, ElEsawi MA, Pan RH, Wan Q, Lu HY (2020) Seed priming and foliar application with jasmonic acid enhance salinity stress tolerance of soybean (Glycine max L.) seedlings. J Sci Food Agric 101(5):2027–2041

    Article  PubMed  Google Scholar 

  • Sheteiwy MS, AbdElgawad H, Xiong YC, Macovei A, Brestic M, Skalicky M, Shaghaleh H, Hamoud YA, ElSawah AM (2021) Inoculation with Bacillus amyloliquefaciens and mycorrhiza confers tolerance to drought stress and improve seed yield and quality of soybean plant. Physiol Plantarum 172(4):2153–2169

    Article  CAS  Google Scholar 

  • Shilev S, Sancho ED, Benlloch-González M (2012) Rhizospheric bacteria alleviate salt-produced stress in sunflower. J Environ Manage 95:S37–S41

    Article  CAS  PubMed  Google Scholar 

  • Wang XP, Geng SJ, Ma YQ, Shi DC, Yang CW, Wang H (2015) Growth, photosynthesis, solute accumulation, and ion balance of tomato plant under sodium- or potassium-salt stress and alkali stress. Agron J 107:651. https://doi.org/10.2134/agronj14.0344

    Article  CAS  Google Scholar 

  • Wen ZG, Xing JC, Liu C, Zhu XM, Zhao BQ, Dong J, He TT, Zhao XH, Hong LZ (2022) The effects of ectomycorrhizal inoculation on survival and growth of Pinus thunbergii seedlings planted in saline soil. Symbiosis 86:71–80

    Article  CAS  Google Scholar 

  • Williams B, Kabbage M, Kim H, Britt R, Dickman MB (2011) Tipping the balance: Sclerotinia sclerotiorum secreted oxalic acid suppresses host defenses by manipulating the host redox environment. Plos Pathog 7:e1002107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu DZ, Shen QF, Cai SG, Chen ZH, Dai F, Zhang GP (2013) Ionomic responses and correlations between elements and metabolites under salt stress in wild and cultivated barley. Plant Cell Physiol 54:1976–1988

    Article  CAS  PubMed  Google Scholar 

  • Xiong YP, Chen SY, Guo BY, Niu MY, Zhang XH, Li Y, Wu KL, Zheng F, Jaime AS, Zeng SJ, Ma GH (2020) An efficient micropropagation protocol for Metasequoia glyptostroboides Hu et Cheng from shoot segments of 2-year-old trees. Trees 34(1):307–313

    Article  CAS  Google Scholar 

  • Xu LP, Liu JB, Zhang ZH, Yu FY, Guo J, Yue HW (2018) Effect of salt stress on growth and physiology in Melia azedarach seedlings of six provenances. Int J Agric Biol 20:471–180

    Article  CAS  Google Scholar 

  • Yan HX, Guo SR, Liu W (2010) Effects of bacillus subtilis on rhizosphere enzyme activities of cucumber under salt-stress. Acta Agric Boreali Sin 25:209–212

    Google Scholar 

  • Yang A, Akhtar SS, Iqbal S, Amjad M, Naveed M, Zahir ZA, Jacobsen S (2016) Enhancing salt tolerance in quinoa by halotolerant bacterial inoculation. Funct Plant Biol 43:632–642

    Article  CAS  PubMed  Google Scholar 

  • Yang S, Ulhassan Z, Shah AM, Khan AR, Azhar W, Hamid Y, Hussain S, Sheteiwy MS, Salam A, Zhou WJ (2021) Salicylic acid underpins silicon in ameliorating chromium toxicity in rice by modulating antioxidant defense, ion homeostasis and cellular ultrastructure. Plant Physiol Biochem 166:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Yao DX, Zhang XY, Zhao XH, Liu CL, Wang CC, Zhang ZH, Wei Q, Wang QH, Yan H, Li FG, Su Z (2011) Transcriptome analysis reveals salt-stress-regulated biological processes and key pathways in roots of cotton (Gossypium hirsutum L.). Genomics 98:47–55

    Article  CAS  PubMed  Google Scholar 

  • Yi YY, Wang R, Liu XQ, Deng ZJ (2021) Effects of drought and salt stress on seed germination and seedling growth of Metasequoia glyptostroboides. Seed 40(7):45–49 (in Chinese)

    Google Scholar 

  • Yin DC, Halifu S, Song RQ, Qi JY, Deng X, Deng JF (2020) Effects of an ectomycorrhizal fungus on the growth and physiology of Pinus sylvestris var mongolica seedlings subjected to saline–alkali stress. J For Res 31(3):781–788

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. DL, the Connecticut Agricultural Experiment Station, USA, for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqin Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the National Key Research and Development Program of China (2017YFD0600104) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD).

The online version is available at http://www.springerlink.com.

Corresponding editor: Yanbo Hu.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, W., Xu, X., Li, Z. et al. Combining ectomycorrhizal fungi and plant growth-promoting rhizobacteria to enhance salt tolerance of Metasequoia glyptostroboides. J. For. Res. 34, 1603–1614 (2023). https://doi.org/10.1007/s11676-022-01578-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-022-01578-y

Keywords

Navigation