Skip to main content
Log in

Role of Combined Use of Mycorrhizae Fungi and Plant Growth Promoting Rhizobacteria in the Tolerance of Quinoa Plants Under Salt Stress

  • Original Article / Originalbeitrag
  • Published:
Gesunde Pflanzen Aims and scope Submit manuscript

Abstract

The main objective of this study was to evaluate the effect of biofertilizers based on plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) on the tolerance of quinoa, (var. Titikaka) Titicaca under non-saline and saline conditions (0, 200 and 400 mM NaCl). The two microbial symbiotes were applied individually and/or in combination in the greenhouse. Several morphological and physiological parameters were evaluated under normal and stress conditions. The high level of salinity (400 mM NaCl) had deleterious effects on the growth and physiology of quinoa compared to unstressed conditions (0 Mm NaCl). However, non-inoculated quinoa plants grown under 400 mM NaCl conditions showed a significant decrease in total dry biomass, leaf water potential, stomatal conductance, and chlorophyll fluorescence compared to unstressed control plants (0 Mm NaCl). Under 400 mM NaCl, co-inoculation with PGPR and AMF improved dry biomass, leaf water potential, stomatal conductance, and chlorophyll fluorescence by 930, 38, 266 and 7%, respectively compared to the stressed control (400 Mm NaCl). Thus, the biofertilizers used improved plant growth and physiology by activating the photosynthetic machinery under salt stress conditions. These findings suggest that the combination of PGPR and AMF could be used for the improvement of quinoa tolerance to salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadi VAJM, Sepehri M (2016) Effect of Piriformospora indica and Azotobacter chroococcum on mitigation of zinc deficiency stress in wheat (Triticum aestivum L.). Symbiosis 69:9–19

    Article  CAS  Google Scholar 

  • Achour A, Bidai Y, Belkhodja M (2015) L’impact de la salinité sur le comportement hydrique et métabolique d’une variété de Gombo (Abelmoschus esculentus L.). Int J Innov Appl Stud 12:943

    Google Scholar 

  • Ahanger MA, Agarwal RM (2017) Salinity stress induced alterations in antioxidant metabolism and nitrogen assimilation in wheat (Triticum aestivum L) as influenced by potassium supplementation. Plant Physiology and Biochemistry 115:449–460

    Article  CAS  PubMed  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014a) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 25–55

    Chapter  Google Scholar 

  • Ahanger MA, Tyagi SR, Wani MR, Ahmad P (2014b) Drought tolerance: role of organic osmolytes, growth regulators, and mineral nutrients. In: Physiological mechanisms and adaptation strategies in plants under changing environment. Springer, New York, pp 25–55

    Chapter  Google Scholar 

  • Ahmad A (2015) A note on call-out culture. Briarpatch Magazine, vol 2

    Google Scholar 

  • Ait-El-Mokhtar M, Ben-Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A (2019a) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 253:429–438

    Article  Google Scholar 

  • Ait-El-Mokhtar M, Ben-Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A (2019b) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 253:429–438. https://doi.org/10.1016/j.scienta.2019.04.066

    Article  Google Scholar 

  • Ait-El-Mokhtar M, Ben-Laouane R, Anli M, Boutasknit A, Wahbi S, Meddich A (2019c) Use of mycorrhizal fungi in improving tolerance of the date palm (Phoenix dactylifera L.) seedlings to salt stress. Sci Hortic 253:429–438

    Article  Google Scholar 

  • Amaya-Carpio L, Davies FT, Fox T, He C (2009) Arbuscular mycorrhizal fungi and organic fertilizer influence photosynthesis, root phosphatase activity, nutrition, and growth of Ipomoea carnea ssp. fistulosa. Photosynthetica 47:1–10

    Article  CAS  Google Scholar 

  • Anli M, Baslam M, Tahiri A, Raklami A, Symanczik S, Boutasknit A, Ait-El-Mokhtar M, Ben-Laouane R, Toubali S, Ait Rahou Y, Ait Chitt M, Oufdou K, Mitsui T, Hafidi M, Meddich A (2020) Biofertilizers as strategies to improve photosynthetic apparatus, growth, and drought stress tolerance in the date palm. Front Plant Sci 11:516818. https://doi.org/10.3389/fpls.2020.516818

    Article  PubMed  PubMed Central  Google Scholar 

  • Armada E, Probanza A, Roldán A, Azcón R (2016) Native plant growth promoting bacteria Bacillus thuringiensis and mixed or individual mycorrhizal species improved drought tolerance and oxidative metabolism in Lavandula dentata plants. J Plant Physiol 192:1–12

    CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24(1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aroca R, Vernieri P, Irigoyen JJ, Sánchez-Díaz M, Tognoni F, Pardossi A (2003) Involvement of abscisic acid in leaf and root of maize (Zea mays L.) in avoiding chilling-induced water stress. Plant Sci 165:671–679

    Article  CAS  Google Scholar 

  • Aubert G (1978) Méthodes d’analyses des sols. Centre régional de documentation pédagogique, Marseille

    Google Scholar 

  • Bastidas EG, Roura R, Rizzolo DAD, Massanés T, Gomis R (2016) Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: an integrative review. J Nutr Food Sci. https://doi.org/10.4172/2155-9600.1000497

    Article  Google Scholar 

  • Basu A, Ray S, Chowdhury S, Sarkar A, Mandal DP, Bhattacharjee S, Kundu S (2018) Evaluating the antimicrobial, apoptotic, and cancer cell gene delivery properties of protein-capped gold nanoparticles synthesized from the edible mycorrhizal fungus Tricholoma crassum. Nanoscale Res Lett 13:1–16

    Article  CAS  Google Scholar 

  • Bechtaoui N, Raklami A, Benidire L, Tahiri A, Göttfert M, Oufdou K (2020) Effects of PGPR co-inoculation on growth, phosphorus nutrition and phosphatase/phytase activities of faba bean under different phosphorus availability conditions. Pol J Environ Stud 29:1557–1565

    Article  CAS  Google Scholar 

  • Begum N, Qin C, Ahanger MA, Raza S, Khan MI, Ashraf M, Ahmed N, Zhang L (2019) Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci 10:1–15. https://doi.org/10.3389/fpls.2019.01068

    Article  Google Scholar 

  • Ben-Laouane R, Meddich A, Bechtaoui N, Oufdou K, Wahbi S (2019) Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanz 71:135–146

    Article  CAS  Google Scholar 

  • Ben-Laouane R, Baslam M, Ait-El-Mokhtar M, Anli M, Boutasknit A, Ait-Rahou Y, Toubali S, Mitsui T, Oufdou K, Wahbi S, Meddich A (2020) Potential of native arbuscular mycorrhizal fungi, rhizobia, and/or green compost as alfalfa (Medicago sativa) enhancers under salinity. Microorganisms 8(11):1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benaffari W, Boutasknit A, Anli M, Ait-El-Mokhtar M, Ait-Rahou Y, Ben-Laouane R, Ben Ahmed H, Mitsui T, Baslam M, Meddich A (2022) The native arbuscular mycorrhizal fungi and vermicompost-based organic amendments enhance soil fertility, growth performance, and the drought stress tolerance of Quinoa. Plants 11:393. https://doi.org/10.3390/plants11030393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouras H, Choukr-Allah R, Amouaouch Y, Bouaziz A, Devkota KP, El Mouttaqi A, Bouazzama B, Hirich A (2022) How does Quinoa (Chenopodium quinoa Willd.) respond to phosphorus fertilization and irrigation water salinity? Plants 11(2):216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Clemmensen KE, Durling MB, Michelsen A, Hallin S, Finlay RD, Lindahl BD (2021) A tipping point in carbon storage when forest expands into tundra is related to mycorrhizal recycling of nitrogen. Ecol Lett 24:1193–1204

    Article  PubMed  Google Scholar 

  • Copetta A, Bardi L, Bertolone E, Berta G (2011) Fruit production and quality of tomato plants (Solanum lycopersicum L.) are affected by green compost and arbuscular mycorrhizal fungi. Plant Biosyst 145:106–115

    Article  Google Scholar 

  • Devireddy AR, Zandalinas SI, Fichman Y, Mittler R (2021) Integration of reactive oxygen species and hormone signaling during abiotic stress. Plant J 105:459–476

    Article  CAS  PubMed  Google Scholar 

  • DuBois AB, Botelho SY, Bedell GN, Marshall R, Comroe JH (1956) A rapid plethysmographic method for measuring thoracic gas volume: a comparison with a nitrogen washout method for measuring functional residual capacity in normal subjects. J Clin Invest 35:322–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estrada B, Aroca R, Maathuis FJ, Barea JM, Ruiz-lozano JM (2013) Arbuscular mycorrhizal fungi native from a mediterranean saline area enhance maize tolerance to salinity through improved ion homeostasis. Plant Cell Environ 36:1771–1782

    Article  CAS  PubMed  Google Scholar 

  • Evelin H, Devi TS, Gupta S, Kapoor R (2019) Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci 10:470

    Article  PubMed  PubMed Central  Google Scholar 

  • Fagandini Ruiz F (2019) Distribution des parents sauvages du quinoa cultivé en lien avec les pratiques et usages des communautés andines dans la région de Puno au Pérou (PhD Thesis). AgroParisTech

  • Gaiotti F, Marcuzzo P, Belfiore N, Lovat L, Fornasier F, Tomasi D, Bel N, Lovat L, Fornasier F, Tomasi D (2017) Influence of compost addition on soil properties, root growth and vine performances of Vitis vinifera cv Cabernet sauvignon. Sci Hortic 225:88–95

    Article  Google Scholar 

  • Gianinazzi S, Pearson VG, Trouvelot A (1986) Que peut-on attendre des mycorhizes dans la production des arbres fruitiers? Fruits 41:553–556

    Google Scholar 

  • Goswami D, Thakker JN, Dhandhukia PC (2016) Portraying mechanics of plant growth promoting rhizobacteria (PGPR): a review. Cogent Food Agric 2(1):1127500

    Google Scholar 

  • Hafez EM, Osman HS, Gowayed SM, Okasha SA, Omara AED, Sami R et al (2021) Minimizing the adversely impacts of water deficit and soil salinity on maize growth and productivity in response to the application of plant growth-promoting rhizobacteria and silica nanoparticles. Agronomy 11:676

    Article  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98(4):1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemissi I, Labidi S, Dhifalli F, Hammami R, Hachana A, Hlel D, Sifi B, Ben JF (2019) Effet de la bio inoculation mycorhizienne et rhizobiale sur les composantes de rendement du blé dur (Triticum durum Desf.). In: Annales de l’INRA

    Google Scholar 

  • Hidri R, Barea JM, Mahmoud OM‑B, Abdelly C, Azcón R (2016) Impact of microbial inoculation on biomass accumulation by Sulla carnosa provenances, and in regulating nutrition, physiological and antioxidant activities of this species under non-saline and saline conditions. J Plant Physiol 201:28–41

    Article  CAS  PubMed  Google Scholar 

  • Hoang HL, de Guzman CC, Cadiz NM, Hoang TTH, Tran DH, Rehman H (2020) Salicylic acid and calcium signaling induce physiological and phytochemical changes to improve salinity tolerance in red amaranth (Amaranthus tricolor L.). J Soil Sci Plant Nutr 20:1759–1769

    Article  CAS  Google Scholar 

  • Hori K, Wada A, Shibuta T (1997) Changes in phenoloxidase activities of the galls on leaves of Ulmus davidana formed by Tetraneura fuslformis (Homoptera: Eriosomatidae). Chem Pharm Bull 32:365–371

    CAS  Google Scholar 

  • Hosseinzadeh SR, Amiri H, Ismaili A (2016) Effect of vermicompost fertilizer on photosynthetic characteristics of chickpea (Cicer arietinum L.) under drought stress. Photosynt 54:87–92

    Article  Google Scholar 

  • Huang MH, Chen KH (2009) Single-inductor multi-output (SIMO) DC-DC converters with high light-load efficiency and minimized cross-regulation for portable devices. IEEE J Solid-State Circuits 44:1099–1111

    Article  Google Scholar 

  • Hussain MI, Al-Dakheel AJ, Reigosa MJ (2018) Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiol Biochem 129:411–420

    Article  CAS  PubMed  Google Scholar 

  • Kwon OK, Mekapogu M, Kim KS (2019) Effect of salinity stress on photosynthesis and related physiological responses in carnation (Dianthus caryophyllus). Hortic Environ Biotechnol 60:831–839

    Article  CAS  Google Scholar 

  • Abdel Latef AA, Chaoxing H (2011) Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Scientia Horticulturae 127(3):228–233

    Article  Google Scholar 

  • Li X, Li X, Han B, Zhao Y, Li T, Zhao P, Yu X (2019) Improvement in lipid production in Monoraphidium sp. QLY‑1 by combining fulvic acid treatment and salinity stress. Bioresour Technol 294:122179

    Article  CAS  PubMed  Google Scholar 

  • Ling L, An Y, Wang D, Tang L, Du B, Shu Y, Bai Y, Guo C (2022) Proteomic analysis reveals responsive mechanisms for saline-alkali stress in alfalfa. Plant Physiol Biochem 170:146–159

    Article  CAS  PubMed  Google Scholar 

  • Machado RMA, Serralheiro RP (2017) Soil salinity: effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 3:30

    Article  Google Scholar 

  • Meddich A, Oihabi A, Abbas Y, Bizid E (2000) Rôle des champignons mycorhiziens à arbuscules de zones arides dans la résistance du trèfle (Trifolium alexandrinum L.) au déficit hydrique. Agronomie 20:283–295

    Article  Google Scholar 

  • Meddich A, Jaiti F, Bourzik W, El Asli A, Hafidi M (2015) Use of mycorrhizal fungi as a strategy for improving the drought tolerance in date palm (Phoenix dactylifera L). Sci Hortic 192:468–474

    Article  Google Scholar 

  • Metwally RA, Abdelhameed RE (2018) Synergistic effect of arbuscular mycorrhizal fungi on growth and physiology of salt-stressed Trigonella foenum-graecum plants. Biocatal Agric Biotechnol 16:538–544

    Article  Google Scholar 

  • Miranda-Apodaca J, Agirresarobe A, Martínez-Goñi XS, Yoldi-Achalandabaso A, Pérez-López U (2020) N metabolism performance in Chenopodium quinoa subjected to drought or salt stress conditions. Plant Physiol Biochem 155:725–734

    Article  CAS  PubMed  Google Scholar 

  • Murkute P, Ghadi H, Patil S, Rawool H, Pandey S, Chakrabarti S (2018) Emerging material zinc magnesium oxide based nanorods: Growth process optimization and sensor application towards humidity detection. Sensors Actuators B Chem 256:204–216

    Article  CAS  Google Scholar 

  • Negrão S, Schmöckel SM, Tester M (2017) Evaluating physiological responses of plants to salinity stress. Ann Bot 119:1–11

    Article  PubMed  Google Scholar 

  • Ngumbi E, Kloepper J (2016) Bacterial-mediated drought tolerance: current and future prospects. Appl Soil Ecol 105:109–125

    Article  Google Scholar 

  • Ouhaddou R, Ben-Laouane R, Slimani A, Boutasknit A, Anli M, Oufdou K, Baslam M, Meddich A (2022) Autochthonous Biostimulants as a promising biological tool to promote lettuce growth and development under salinity conditions. Environ Sci Proc 16:41

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158-IN18

    Article  Google Scholar 

  • Polash MAS, Sakil MA, Tahjib-Ul-Arif M, Hossain MA (2018) Effect of salinity on osmolytes and relative water content of selected rice genotypes. Trop Plant Res 5:227–232

    Article  Google Scholar 

  • Polle A, Otter T, Seifert F (1994) Apoplastic POD in needles. Plant Physiol 106:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porcel C, Tejeda-Lorente A, Martínez MA, Herrera-Viedma E (2012) A hybrid recommender system for the selective dissemination of research resources in a technology transfer office. Inf Sci 184:1–19

    Article  Google Scholar 

  • Ra CH, Kang C‑H, Kim NK, Lee C‑G, Kim S‑K (2015) Cultivation of four microalgae for biomass and oil production using a two-stage culture strategy with salt stress. Renew Energy 80:117–122

    Article  CAS  Google Scholar 

  • Raklami A, Bechtaoui N, Tahiri AI, Anli M, Meddich A, Oufdou K (2019) Use of rhizobacteria and mycorrhizae consortium in the open field as a strategy for improving crop nutrition, productivity and soil fertility. Front Microbiol 10:1106

  • Ramzani PMA, Shan L, Anjum S, Khan W‑D, Ronggui H, Iqbal M, Virk ZA, Kausar S (2017) Improved quinoa growth, physiological response, and seed nutritional quality in three soils having different stresses by the application of acidified biochar and compost. Plant Physiol Biochem 116:127–138. https://doi.org/10.1016/j.plaphy.2017.05.003

    Article  CAS  PubMed  Google Scholar 

  • Rao KM, Sresty TVS (2000) Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci 157:113–128

    Article  Google Scholar 

  • Rasool S, Ahmad A, Siddiqi TO, Ahmad P (2013) Changes in growth, lipid peroxidation and some key antioxidant enzymes in chickpea genotypes under salt stress. Acta Physiol Plant 35:1039–1050

    Article  CAS  Google Scholar 

  • Ren J, Liang J, Zhao Y (2020) Soil ph measurement based on compressive sensing and deep image prior. IEEE Trans Emerg Top Comput Intell 4:74–82

    Article  Google Scholar 

  • Renoud S, Abrouk D, Prigent-Combaret C, Wisniewski-Dyé F, Legendre L, Moënne-Loccoz Y, Muller D (2022) Effect of inoculation level on the impact of the PGPR azospirillum lipoferum CRT1 on selected microbial functional groups in the rhizosphere of field maize. Microorganisms 10:325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz-Sánchez M, Aroca R, Muñoz Y, Polón R, Ruiz-Lozano JM (2010) The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress. J Plant Physiol 167(11):862–869

    Article  PubMed  Google Scholar 

  • Rydlová J, Püschel D (2020) Arbuscular mycorrhiza, but not hydrogel, alleviates drought stress of ornamental plants in peat-based substrate. Appl Soil Ecol 146:103394

    Article  Google Scholar 

  • Sandil S, Dobosy P, Kröpfl K, Füzy A, Óvári M, Záray G (2019) Effect of irrigation water containing arsenic on elemental composition of bean and lettuce plants cultivated in calcareous sandy soil. Food Prod Process Nutr 1:1–10

    Article  Google Scholar 

  • Santander C, Aroca R, Cartes P, Vidal G, Cornejo P (2021) Aquaporins and cation transporters are differentially regulated by two arbuscular mycorrhizal fungi strains in lettuce cultivars growing under salinity conditions. Plant Physiol Biochem 158:396–409

    Article  CAS  PubMed  Google Scholar 

  • Scholander PF, Bradstreet ED, Hemmingsen EA, Hammel HT (1965) Sap pressure in vascular plants: Negative hydrostatic pressure can be measured in plants. Science 148:339–346

    Article  CAS  PubMed  Google Scholar 

  • Scotti R, Pane C, Spaccini R, Palese AM, Piccolo A, Celano G, Zaccardelli M (2016) On-farm compost: a useful tool to improve soil quality under intensive farming systems. Appl Soil Ecol 107:13–23

    Article  Google Scholar 

  • Shah WH, Rasool A, Saleem S, Mushtaq NU, Tahir I, Hakeem KR, Rehman RU (2021) Understanding the integrated pathways and mechanisms of transporters, protein kinases, and transcription factors in plants under salt stress. Int J Genomics 2021:1–16

    Article  CAS  Google Scholar 

  • Singh BN, Hidangmayum A, Singh A, Shera SS, Dwivedi P (2019) Secondary metabolites of plant growth promoting rhizomicroorganisms. Springer, Berlin

    Book  Google Scholar 

  • Srivastava A, Sharma VK, Kaushik P, El-Sheikh MA, Qadir S, Mansoor S (2022) Effect of silicon application with mycorrhizal inoculation on Brassica juncea cultivated under water stress. PLoS ONE 17:e261569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tartoura KA, Youssef SA, Tartoura E‑SA (2014) Compost alleviates the negative effects of salinity via up-regulation of antioxidants in Solanum lycopersicum L. plants. Plant Growth Regul 74:299–310

    Article  CAS  Google Scholar 

  • Toubali S, Tahiri AI, Anli M, Symanczik S, Boutasknit A, Ait-El-Mokhtar M et al (2020) Physiological and biochemical behaviors of date palm vitroplants treated with microbial consortia and compost in response to salt stress. Appl Sci 10:8665

    Article  CAS  Google Scholar 

  • Toubali S, Ait-El-Mokhtar M, Boutasknit A, Anli M, Ait-Rahou Y, Benaffari W, Ben-Ahmed H, Mitsui T, Baslam M, Meddich A (2022) Root reinforcement improved performance, productivity, and grain bioactive quality of field-droughted quinoa (Chenopodium quinoa). Front Plant Sci. https://doi.org/10.3389/fpls.2022.860484

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouvelot A, Kough JL, Gianinazzi-Pearson V (1986) Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthode d’estimation ayant une signification fonctionnelle. In: Physiological and Genetical Aspects of Mycorrhizae: Proceedings of the 1st European Symposium on Mycorrhizae, Dijon, 1–5 July 1985, pp 217–221

    Google Scholar 

  • Velikova V, Edreva A, Loreto F (2004) Endogenous isoprene protects Phragmites australis leaves against singlet oxygen. Physiol Plant 122:219–225

    Article  CAS  Google Scholar 

  • Wang J, Yuan J, Ren Q, Zhang B, Zhang J, Huang R, Wang GG (2022) Arbuscular mycorrhizal fungi enhanced salt tolerance of Gleditsia sinensis by modulating antioxidant activity, ion balance and P/N ratio. Plant Growth Regul 97:33–49

    Article  CAS  Google Scholar 

  • Xu Z, Chen X, Lu X, Zhao B, Yang Y, Liu J (2021) Integrative analysis of transcriptome and metabolome reveal mechanism of tolerance to salt stress in oat (Avena sativa L.). Plant Physiol Biochem 160:315–328

    Article  CAS  PubMed  Google Scholar 

  • Ye L, Zhao X, Bao E, Cao K, Zou Z (2019) Effects of arbuscular mycorrhizal fungi on watermelon growth, elemental uptake, antioxidant, and photosystem II activities and stress-response gene expressions under salinity-alkalinity stresses. Front Plant Sci 10:863

    Article  PubMed  PubMed Central  Google Scholar 

  • Zeeshan M, Lu M, Sehar S, Holford P, Wu F (2020) Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy 10:127

    Article  CAS  Google Scholar 

  • Zhang F, Zou Y‑N, Wu Q‑S (2018) Quantitative estimation of water uptake by mycorrhizal extraradical hyphae in citrus under drought stress. Sci Hortic 229:132–136

    Article  Google Scholar 

  • Zou YN, Wu QS, Kuča K (2021) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol 23:50–57

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 862555. The project “project acronym” was carried out under the ERA-Net Cofund FOSC (Grant N° 862555), built upon and supported by the experience from the Joint Programming Initiative on Agriculture, Food Security & Climate change (FACCE-JPI) and the ERA-Net Cofund LEAP-Agri. Also, the present study was partially supported by the Tuniso-Moroccan Mixed Laboratories (LMTM) of Plant Physiology and Biotechnology and Climate Change LPBV2C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelilah Meddich.

Ethics declarations

Conflict of interest

S. Toubali and A. Meddich declare that they have no competing interests.

Rights and permissions

Springer Nature oder sein Lizenzgeber (z.B. eine Gesellschaft oder ein*e andere*r Vertragspartner*in) hält die ausschließlichen Nutzungsrechte an diesem Artikel kraft eines Verlagsvertrags mit dem/den Autor*in(nen) oder anderen Rechteinhaber*in(nen); die Selbstarchivierung der akzeptierten Manuskriptversion dieses Artikels durch Autor*in(nen) unterliegt ausschließlich den Bedingungen dieses Verlagsvertrags und dem geltenden Recht.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toubali, S., Meddich, A. Role of Combined Use of Mycorrhizae Fungi and Plant Growth Promoting Rhizobacteria in the Tolerance of Quinoa Plants Under Salt Stress. Gesunde Pflanzen 75, 1855–1869 (2023). https://doi.org/10.1007/s10343-023-00847-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10343-023-00847-y

Keywords

Navigation