Skip to main content
Log in

The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China

  • Original Paper
  • Published:
Journal of Forestry Research Aims and scope Submit manuscript

Abstract

Soil enzymes play a vital role in biogeochemical cycling and ecosystem functions. In this study, we examined the response of six soil enzymes to changes in physicochemical properties resulting from changes in season and vegetation and geological conditions. Catalase, urease, acid phosphatase, invertase, amylase, and cellulase not only promote carbon, nitrogen, and phosphorus cycling, but also participate in the decomposition of harmful substances. Thirty-six soil samples were collected from karst and non-karst areas in two different seasons and from three different types of vegetation in Yunnan province, southwest China. Both vegetation types and season had significant effects on soil physicochemical properties and enzyme activities. In the same plot, soil water content, electrical conductivity, organic carbon, total nitrogen, and total phosphorus increased in the rainy season, indicating enhanced microbial metabolic activity. With the exception of urease activity, the remaining five enzymes showed higher activity in the rainy season. Changes in activities between the two seasons were significant in all samples. In the same season, activity levels of soil enzymes were higher in karst areas than in non-karst areas, and higher in natural forest than in artificial forests. The transformative abilities of soil elements are higher in karst areas than in non-karst areas, and higher in natural forests than in artificial forests. Correlation analysis showed that the activities of the six enzymes correlated significantly; however, soil physical and chemical indices, such as organic matter, pH, and moisture, which are essential for enzyme activity, differed by season. Redundancy analysis also revealed that the main factors influencing enzyme activity differed between the two seasons. The results from this study provide a theoretical basis for further research on the restoration of natural ecological systems in karst landscapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adetunji AT, Lewu FB, Mulidzi R, Ncube B (2017) The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators. J Soil Sci Plant Nut 17:794–807

    CAS  Google Scholar 

  • Andersen R, Chapman SJ, Artz RRE (2013) Microbial communities in natural and disturbed peat lands. Soil Biol Biochem 57:979–994

    CAS  Google Scholar 

  • Antonelli ML, Carunchio V, Luciani M, Vinci G (1987) Determination of the urease activity and the relative inhibition in the presence of some metal ions: a micro calorimetric study. Thermochim Acta 122:95–103

    CAS  Google Scholar 

  • Baldrian P (2014) Distribution of extracellular enzymes in soils: spatial heterogeneity and determining factors at various scales. Soil Sci Soc Am J 78:11–18

    Google Scholar 

  • Bao SD (2008) Soil agricultural chemistry analysis. China Agriculture Press, Beijing

    Google Scholar 

  • Bechmann ME, Stalnacke P, Kaerno SH (2007) Testing the Norwegian phosphorus index at the field and subcatchment scale. Agric Ecosyst Environ 120:117–128

    CAS  Google Scholar 

  • Chen H, Luo P, Wen L, Yang LQ, Wang KL, Li DJ (2017) Determinants of soil extracellular enzyme activity in a karst region, southwest China. Eur J Soil Biol 80:69–76

    CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245(1):35–47

    CAS  Google Scholar 

  • Das SK, Varma A (2010) Role of Enzymes in Maintaining Soil Health. Soil Enzymology

  • Emilia CRL, Eduardo RV (2011) Microbial activity in soil and sediments of the upper Arzobispo River basin. Agron Colomb 29:449–455

    Google Scholar 

  • Fan ZZ, Lu SY, Wang J, Guo DC, Pang DB, Zhou JX, Peng XW (2018) Microbial and enzyme activities in rhizosphere soil of different forest stand in karst and non karst areas. J Beijing For Univ 40(7):55–61

    Google Scholar 

  • García-Orenes F, Roldán A, Morugán-Coronado A, Linares C, Cerdà A, Caravaca F (2016) Organic fertilization in traditional mediterranean grapevine orchards mediates changes in soil microbial community structure and enhances soil fertility. Land Degrad Dev 27(6):1622–1628

    Google Scholar 

  • Gianfreda L (2015) Enzymes of importance to rhizosphere processes. J Soil Sci Plant Nut 15:283–306

    CAS  Google Scholar 

  • Göransson H, Edwards PJ, Perreijn K, Smittenberg RH, Olde Venterink H (2014) Rocks create nitrogen hotspots and N:P heterogeneity by funnelling rain. Biogeochemistry 121:329–338

    Google Scholar 

  • He XY, Wang KL, Zhang W, Chen ZH, Zhu YG, Chen HS (2008) Positive correlation between soil bacterial metabolic and plant species diversity and bacterial and fungal diversity in a vegetation succession on Karst. Plant Soil 307:123–134

    CAS  Google Scholar 

  • Holtmeier FK, Broll G (2005) Sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change at landscape and local scales. Global Ecol Biogeogr 14:395–410

    Google Scholar 

  • Hou WJ, Gao JB, Peng T, Wu SH, Dai EF (2016) Review of ecosystem vulnerability studies in the karst region of Southwest China based on a structure-function-habitat framework. Prog Geog 35:320–330

    Google Scholar 

  • Hu LN, Su YR, He XY, Wu JS, Zheng H, Li Y, Wang AH (2012) Response of soil organic carbon mineralization in typical Karst soils following the addition of 14C-labeled rice straw and CaCO3. J Sci Food Agric 92:1112–1118

    CAS  Google Scholar 

  • Iovieno P, Morra L, Leone A, Pagano L, Alfani A (2009) Effect of organic and mineral fertilizers on soil respiration and enzyme activities of two Mediterranean horticultural soils. Biol Fert Soils 45:555–561

    CAS  Google Scholar 

  • Johansson E, Krantz-Rulcker C, Zhang BX, Oberg G (2000) Chlorination and biodegradation of lignin. Soil Biol Biochem 32:1029–1032

    CAS  Google Scholar 

  • Kooch Y, Sanji R, Tabari M (2018) Increasing tree diversity enhances microbial and enzyme activities in temperate iranian forests. Trees 32:809–822

    CAS  Google Scholar 

  • Li YY, Shao MA (2006) Change of soil physical properties under long-term natural vegetation restoration in the Loess Plateau of China. J Arid Environ 64:77–96

    Google Scholar 

  • Li W, Zhou PP, Jia LP, Yu LJ, Li XL, Min Z (2009) Limestone dissolution induced by fungal mycelia, acidic materials, and carbonic anhydrase from fungi. Mycopathologia 167:37–46

    PubMed  CAS  Google Scholar 

  • Li Q, Liang JH, He YY, Yu S (2014) Effect of land use on soil enzyme activities at karst area in Nanchuan, Chongqing, Southwest China. Plant Soil Environ 60:15–20

    CAS  Google Scholar 

  • Liang C, Gasco G, Fu S, Mendez A, Paz-Ferreiro J (2016) Biochar from pruning residues as a soil amendment: effects of pyrolysis temperature and particle size. Soil Till Res 164:3–10

    Google Scholar 

  • Maddela NR, Venkateswarlu K (2018) Impact of acephate and buprofezin on soil cellulases. In: Insecticides−Soil Microbiota Interactions. Springer, Cham

  • Mandal A, Patra AK, Singh D, Swarup A, Masto RE (2007) Effect of long-term application of manure and fertilizer on biological and biochemical activities in soil during crop development stages. Bioresour Technol 98:3585–3592

    CAS  Google Scholar 

  • Margesin R, Zimmerbauer A, Schinner F (2000) Monitoring of bioremediation by soil biological activities. Chemosphere 40:339–346

    PubMed  CAS  Google Scholar 

  • Mclaren AD (1963) Biochemistry and soil science. Science 141:1141–1147

    PubMed  CAS  Google Scholar 

  • Meng YN, Zhang QF, Gao JT, Zheng Y, Zhou JC, Chen YM, Yang YS (2018) Seasonal response of extracellular enzyme activity to precipitation exclusion in a subtropical Cunninghamia lanceolata plantation. Acta Ecol Sinica 38:2119–2127

    Google Scholar 

  • Pan FJ, Zhang W, Liang YM, Liu SJ, Wang KL (2018) Increased associated effects of topography and litter and soil nutrients on soil enzyme activities and microbial biomass along vegetation successions in karst ecosystem, southwestern China. Environ Sci Pollut Res 25:16979–16990. http://doi.org/10.1007/s11356-018-1673-3

    CAS  Google Scholar 

  • Qi L, Zhang X, Peng Z, Zhou J (2009) Canonical correlation analysis of soil nutrients, microorganisms and enzyme activities in vegetation restoration areas of degraded and eroded soils in northwestern Hunan province, China. Front For China 4:443–449

    Google Scholar 

  • Ramos LP, Breuil C, Saddler JN (1993) The use of enzyme recycling and the influence of sugar accumulation on cellulose hydrolysis by Trichoderma, cellulases. Enzyme Microb Tech 15:19–25

    CAS  Google Scholar 

  • Rustad L, Campbell J, Marion G, Norby R, Mitchell M, Hartley A, Cornelissen J, Gurevitch J, GCTE-NEWS (2001) A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126(4):543–562

    PubMed  CAS  Google Scholar 

  • Sardans J, Penuelas J, Estiarte M (2008) Changes in soil enzymes related to C and N cycle and in soil C and N content under prolonged warming and drought in a Mediterranean shrub land. Appl Soil Ecol 39:223–235

    Google Scholar 

  • Sperber CV, Kries H, Tamburini F, Bernasconi SM, Frossard E (2014) The effect of phosphomonoesterases on the oxygen isotope composition of phosphate. Geochim Cosmochim Ac 125:519–527

    Google Scholar 

  • Tian L, Shi W (2014) Short-term effects of plant litter on the dynamics, amount, and stoichiometry of soil enzyme activity in agroecosystems. Eur J Soil Biol 65:23–29

    CAS  Google Scholar 

  • Trasar-Cepeda C, Gil-Sotres F, Leiros MC (2007) Thermodynamic parameters of enzymes in grassland soils from Galicia, NW Spain. Soil Biol Biochem 39:311–319

    CAS  Google Scholar 

  • Wu B, Wang Z, Zhang Q, Shen N (2018) Distinguishing transport-limited and detachment-limited processes of interrill erosion on steep slopes in the Chinese loessial region. Soil Till Res 177:88–96

    Google Scholar 

  • Xia ZW, Bai E, Wang QK, Gao DC, Zhou JD, Jiang P, Wu JB (2016) Biogeographic distribution patterns of bacteria in typical Chinese forest soils. Front Microbiol 7:1106

    PubMed  PubMed Central  Google Scholar 

  • Xie SY, Wang J (2012) Soil ecosystem degradation of karst regions in southwestern China. Asian Agric Res 9:60–63

    Google Scholar 

  • Yan ST (2013) Study of Soil Enzyme Composition of Soil Fauna at Kuncheng Lake. J Anhui Agric Sci 41:3345–3347

    Google Scholar 

  • Yang H, Zhang LK, Shi YU, Cao JH (2012) Effects of different land-uses on the features of water-stable aggregates in karst and clasolite areas in Maocun, Guilin. Carsologica Sinica 31:265–271

    CAS  Google Scholar 

  • Yao HY (2006) Soil microbial ecology and its experimental techniques. Science Press, Beijing

    Google Scholar 

  • Yao XH, Min H, Lü ZH, Yuan HP (2006) Influence of acetamiprid on soil enzymatic activities and respiration. Eur J Soil Biol 42:120–126

    CAS  Google Scholar 

  • Yuan DX (1991) Karst of China. Geological Publishing House, Beijing

    Google Scholar 

  • Zhang PJ, Li LQ, Pan GX, Ren JC (2006) Soil quality changes in land degradation as indicated by soil chemical, biochemical and microbiological properties in a karst area of southwest Guizhou, China. Environ Geol 51:609–619

    CAS  Google Scholar 

  • Zhao SH, Zhang C, Xia Q, Shen HG (2007) The primary analysis of soil organic matter and nitrogen in Karst and non-Karst areas of Maocun, Guilin. J Guangxi Acad Sci 23:36–38

    Google Scholar 

  • Zhao WN, Wang YX, Chen QB (2015) Relationships between the soil enzyme activity, physical chemical properties and microorganism quantity in Quercus aquifolioides forest. J Northeast For Univ 43:72–77

    Google Scholar 

  • Zheng SZ, Xiao QL, Wu WD, He YQ (2008) Relationship among microbial groups, enzyme activity and physico-chemical properties under different artificial forestry in hilly red soil. Chin J Eco-Agric 16:57–61

    CAS  Google Scholar 

  • Zhu H, He X, Wang K, Su Y, Wu J (2012) Interactions of vegetation succession, soil bio-chemical properties and microbial communities in a Karst ecosystem. Eur J Soil Biol 51:1–7

    CAS  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for their careful and insightful suggestions, which improved the manuscript a lot. This work was supported by the National Key Research and Development Program of China (2016YFC0502500, 2016YFC0502504); the National Natural Science Foundation of China (315005831008509) and the Special fund for basic scientific research expenses of central public welfare scientific research institutes (CAFYBB2014ZD006, CAFYBB2016QB020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiawei Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Project funding: This work was supported by the National Key Research and Development Program of China (2016YFC0502500, 2016YFC0502504); the National Natural Science Foundation of China (315005831008509) and the Special fund for basic scientific research expenses of central public welfare scientific research institutes (CAFYBB2014ZD006, CAFYBB2016QB020).

The online version is available at http://www.springerlink.com

Corresponding editor: Chai Ruihai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 270 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Lu, S., Liu, S. et al. The effects of vegetation restoration strategies and seasons on soil enzyme activities in the Karst landscapes of Yunnan, southwest China. J. For. Res. 31, 1949–1957 (2020). https://doi.org/10.1007/s11676-019-00959-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11676-019-00959-0

Keywords

Navigation