Skip to main content
Log in

Digenite Cu2−x S: thermodynamic analysis of sulfur activities

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

Gibbs energy modeling of the intermediate copper–sulfur phase digenite is performed at a total pressure of 1 bar using experimental sulfur activity data from the literature. A two-sublattice approach used in the framework of the compound energy formalism takes into account structural considerations. A limited set of optimized model quantities is obtained, which allows reproduction of all sulfur activity data available in the literature over a wide homogeneity and temperature range of the phase. Phase equilibria calculations applying the modeled Gibbs energy for digenite give very satisfactory phase relations in accordance with experimental data. A partial phase diagram within the composition range 0.0 ≤ x S ≤ 0.7 up to elevated temperatures is calculated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Chakrabarti DJ, Laughlin DE (1994) In: Subramanian PR (ed) Phase Diagrams of Binary Copper Alloys. Materials Park, ASM International

    Google Scholar 

  2. Rau H (1967) J Phys Chem Solids 28:903

    Article  CAS  Google Scholar 

  3. Rau H (1974) J Phys Chem Solids 35:1415

    Article  CAS  Google Scholar 

  4. Rau H (1975) Solid State Commun 16:1041

    Article  CAS  Google Scholar 

  5. Nagamori N (1976) Metall Trans 7B:67

    CAS  Google Scholar 

  6. Sharma RC, Chang YA (1979) Chin J Mater Sci 11:58

    CAS  Google Scholar 

  7. Sharma RC, Chang YA (1980) Metall Trans 11B:575

    CAS  Google Scholar 

  8. Dinsdale AT, Chart TG, Barry TI, Taylor JR (1982) High Temp High Press 14:633

    CAS  Google Scholar 

  9. Pareek VK, Ramanarayanan TA, Ling S, Mumford JD (1994) Solid State Ionics 74:263

    Article  CAS  Google Scholar 

  10. Lee BJ, Sundman B, Kim SII, Chin KG (2007) ISIJ Int 47:163

    Article  CAS  Google Scholar 

  11. Waldner P, Pelton AD (2004) Metall Mater Trans 35B:897

    CAS  Google Scholar 

  12. Waldner P, Sitte W (2008) J Phys Chem Solids 69:923

    Article  CAS  Google Scholar 

  13. Waldner P (2009) J Chem Thermodyn 41:171

    Article  CAS  Google Scholar 

  14. Waldner P (2011) J Chem Thermodyn 43:315

    Article  CAS  Google Scholar 

  15. Waldner P, Sitte W (2011) Int J Mat Res 102:1216

    Article  CAS  Google Scholar 

  16. Rahlfs P (1936) Z Phys Chem B 31:157

    Google Scholar 

  17. Morimoto N, Kullerud G (1963) Am Mineral 48:110

    CAS  Google Scholar 

  18. Will G, Hinze E, Abdelrahman ARM (2002) Eur J Mineral 14:591

    Article  CAS  Google Scholar 

  19. Lukashev P, Lambrecht WRL (2007) Phys Rev B 76:195202

    Article  Google Scholar 

  20. Waldner P, Pelton AD (2004) Z Metallk 95:672

    CAS  Google Scholar 

  21. Fjellvåg H, Andersen A (1994) Acta Chim Scand 48:290

    Article  Google Scholar 

  22. Hillert M, Staffanson LI (1970) Acta Chem Scand 24:3618

    Article  CAS  Google Scholar 

  23. Sundman B, Ågren J (1981) J Phys Chem Solids 42:297

    Article  CAS  Google Scholar 

  24. Peronne R, Balesdent D, Rilling J (1972) Bull Soc Chim Fr 2:457

    Google Scholar 

  25. Rilling J, Balesdent D, Peronne R (1972) Bull Soc Chim Fr 5:457

    Google Scholar 

  26. Peronne R, Balesdent D (1983) J Chem Thermodyn 15:295

    Article  CAS  Google Scholar 

  27. Sick G, Schwerdtfeger K (1984) Met Trans 15B:736

    Google Scholar 

  28. Bale CW, Chartrand P, Degterov SA, Eriksson G, Hack K, Mahfoud RB, Melançon J, Pelton AD, Petersen S (2002) CALPHAD 26:189

    Article  CAS  Google Scholar 

  29. Grønvold F, Westrum EF Jr (1987) J Chem Thermodyn 19:1183

    Article  Google Scholar 

  30. Dinsdale AT (1991) CALPHAD 15:317

    Article  CAS  Google Scholar 

  31. Cook WR (1971) The Copper–sulfur phase diagram. Case Western Reserve University, Cleveland

    Google Scholar 

  32. Roseboom EH (1966) Econ Geol 61:641

    Article  CAS  Google Scholar 

  33. Wehefritz V (1960) Z Phys Chem NF 26:339

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Waldner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waldner, P., Sitte, W. Digenite Cu2−x S: thermodynamic analysis of sulfur activities. Monatsh Chem 143, 1215–1218 (2012). https://doi.org/10.1007/s00706-012-0751-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-012-0751-3

Keywords

Navigation