Skip to main content

Advertisement

Log in

Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

All sulfur potential and phase diagram data available in the literature for solid-state equilibria related to digenite have been assessed. Thorough thermodynamic analysis at 1 bar total pressure has been performed. A three-sublattice approach has been developed to model the Gibbs energy of digenite as a function of composition and temperature using the compound energy formalism. The Gibbs energies of the adjacent solid-state phases covelitte and high-temperature chalcocite are also modeled treating both sulfides as stoichiometric compounds. The novel model for digenite offers new interpretation of experimental data, may contribute from a thermodynamic point of view to the elucidation of the role of copper species within the crystal structure and allows extrapolation to composition regimes richer in copper than stoichiometric digenite Cu2S. Preliminary predictions into the ternary Cu-Fe-S system at 1273 K (1000 °C) using the Gibbs energy model of digenite for calculating its iron solubility are promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D.J. Chakrabarti and D.E. Laughlin: in Phase Diagrams of Binary Copper Alloys, P.R. Subramanian, ed., ASM International, Materials Park, OH, 1994, pp. 355–71.

  2. P. Rahlfs: Z. Phys. Chem. B, 1936, vol. 31, pp. 157-94.

    Google Scholar 

  3. N. Morimoto and G. Kullerud: Am. Mineral., 1963, vol. 48, pp. 110-23.

    Google Scholar 

  4. G. Will, E. Hinze, and A.R.M. Abdelrahman: Eur. J Mineral., 2002, vol. 14, pp. 591-98.

    Article  Google Scholar 

  5. P. Lukashev and W.R.L. Lambrecht: Phys. Rev. B, 2007, vol. 76, pp. 195202-1-14.

    Article  Google Scholar 

  6. H. Rau: J. Phys. Chem. Solids, 1967, vol. 28: pp. 903-16.

    Article  Google Scholar 

  7. H. Rau: J. Phys. Chem. Solids, 1974, vol. 35: pp. 1415-24.

    Article  Google Scholar 

  8. H. Rau: Solid State Commun., 1975, vol. 16: pp. 1041-42.

    Article  Google Scholar 

  9. N. Nagamori: Metall. Trans. B, 1976, vol. 7B, pp. 67-80.

    Article  Google Scholar 

  10. R.C. Sharma and Y.A. Chang: Chin. J. Mater. Sci., 1979, vol. 11, pp. 58-62.

    Google Scholar 

  11. R.C. Sharma and Y.A. Chang: Metall. Trans., 1980, vol. 11B, pp. 575-83.

    Article  Google Scholar 

  12. A.T. Dinsdale, T.G. Chart, T.I. Barry, and J.R. Taylor: High Temp-High Pressures, 1982, vol. 14, pp. 633-40.

    Google Scholar 

  13. V.K. Pareek, T.A. Ramanarayanan, S. Ling, and J.D. Mumford: Solid State Ionics, 1974, vol. 74, pp. 263-68.

    Article  Google Scholar 

  14. B.J. Lee, B. Sundman, S.I.I. Kim, and K.G. Chin: ISIJ International, 2007, vol. 47, pp. 163-71

    Article  Google Scholar 

  15. P. Waldner and W. Sitte: Chem. Monthly , 2012, vol. 143, pp. 1215-18.

    Article  Google Scholar 

  16. D. Shishin and S.A. Decterov: CALPHAD, 2012, vol. 38, pp. 59-70.

    Article  Google Scholar 

  17. R. Peronne, D. Balesdent, and J. Rilling: Bull. Soc. Chim., 1972, vol. 2, pp. 457-63.

    Google Scholar 

  18. J. Rilling, D. Balesdent, and R. Peronne: Bull. Soc. Chim., 1972, vol. 5, pp. 1728-31.

    Google Scholar 

  19. R. Peronne and D. Balesdent: J. Chem. Thermodyn., 1983, vol. 15, pp. 295-303.

    Article  Google Scholar 

  20. G. Sick and K. Schwerdtfeger: Met. Trans. B, 1984, vol. 15B, pp. 736- 39.

    Article  Google Scholar 

  21. H.J. Mathieu and H. Rickert: Z. Phys. Chem. N.F., 1972, vol. 79, 315-30

    Article  Google Scholar 

  22. R.W. Potter II: Econ. Geol., 1977, vol. 72(8), pp. 1524-42.

    Article  Google Scholar 

  23. J.A. Schmidt, A.E. Sagua, and G. Lescano: J. Chem. Thermodyn., 1998, vol. 30, pp. 283-90.

    Article  Google Scholar 

  24. M.J. Ferrante, J.M. Stuve, and L.B. Pankratz: High Temp. Science, 1981, vol. 14, pp. 77-90.

    Google Scholar 

  25. F. Grønvold and J.R. Westrum: J. Chem. Thermodyn., 1987, vol. 19, pp. 1183-98.

    Article  Google Scholar 

  26. J.R. Westrum, S. Stølen, and F. Grønvold: J. Chem. Thermodyn., 1987, vol. 19, pp. 1199-1208.

    Article  Google Scholar 

  27. L. Cemič and O.J. Kleppa: Phys. Chem. Miner., 1988, vol. 16, pp. 172-79.

    Article  Google Scholar 

  28. W. Ruehl and E. Saur: Ber.Oberhess. Ges. Natur- u. Heilk Gießen, Naturw. Abt, 1957, vol. 28, pp. 35-47.

  29. V. Wehefritz: Z. Phys. Chem. NF , 1960, vol. 26, pp. 339-58.

    Article  Google Scholar 

  30. E.H. Roseboom: Econ. Geol., 1966, vol. 61, pp. 641-72.

    Article  Google Scholar 

  31. W.R. Cook: Ph.D. Thesis, Case Western Reserve University, Cleveland OH, 1971.

  32. H. Luquet, F. Guastavino, J. Bougnot, and J.C. Vaissiere: Mater. Res. Bull., 1972, vol. 7, 955-62.

    Article  Google Scholar 

  33. A. Dumon, A. Lichanot, and S. Gromb: J.Chim. Phys., 1974, vol. 71(3), 407-14.

    Article  Google Scholar 

  34. C.W. Bale, P. Chartrand, S.A. Degterov, G. Eriksson, K. Hack, R.B. Mahfoud, J. Melançon, A.D. Pelton and S. Petersen: Calphad, 2002, vol. 26, pp. 189-228.

    Article  Google Scholar 

  35. J. Charnock, C.D. Garner, R.A.D. Pattrick, and D.J. Vaughan: Am. Mineral., 1990, vol. 75, pp. 247-55.

    Google Scholar 

  36. D.J. Vaughan, R.G. Burns, and V.M. Burns: Geochim. Cosmochim. Acta, 1971, vol. 35, pp. 365-81.

    Article  Google Scholar 

  37. P. Kumar, R. Nagarajan, and R. Sarangi: J. Mater. Chem. C, 2013, vol. 1, pp. 2448-54.

    Article  Google Scholar 

  38. M. Hillert and L.I. Staffanson: Acta Chem. Scand., 1970, vol. 24, pp. 3618-26.

    Article  Google Scholar 

  39. B. Sundman and J. Ågren: J. Phys. Chem. Solids, 1981, vol. 42, pp. 297-301.

    Article  Google Scholar 

  40. P. Waldner and A.D. Pelton: Z. Metallk., 2004, vol. 95, pp. 672-81.

    Article  Google Scholar 

  41. K.C. Mills: Thermodynamic Data for Sulphides, Selenides and Tellurides, NPL, Teddington, 1974, pp. 237.

    Google Scholar 

  42. A.T. Dinsdale: CALPHAD, 1991, vol. 15, pp. 317-425.

    Article  Google Scholar 

  43. G. Kullerud, R.A. Yund, and G.H. Moh: Econ. Geol Monogr., 1969, vol. 4, 323-43.

    Google Scholar 

  44. I. Ansara and A. Jansson: COST507 Thermochemical Database for Light Metal Alloys, I. Ansara, A.T. Dinsdale and M.H. Rand, eds., 1998, EUR 18499, pp. 165–67.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Waldner.

Additional information

Manuscript submitted 12 January 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waldner, P. Gibbs Energy Modeling of Digenite and Adjacent Solid-State Phases. Metall Mater Trans B 48, 2157–2166 (2017). https://doi.org/10.1007/s11663-017-1001-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-017-1001-1

Keywords

Navigation