Skip to main content
Log in

A Review: Prediction Method for the Remaining Useful Life of the Mechanical System

  • Review
  • Published:
Journal of Failure Analysis and Prevention Aims and scope Submit manuscript

Abstract

Remaining useful life (RUL) refers to the remaining service life of a mechanical system after it runs for a period. Predicting the remaining service life of the system accurately can greatly reduce the loss caused by system downtime and improve the reliability of system operation. Various RUL prediction methods are discussed in this paper. According to the analysis and discussion of various articles, the RUL prediction methods commonly used in the literature can be divided into four categories: physics model-based approaches, statistical model-based approaches, AI approaches, and hybrid approaches. Then the definition and common methods of these classifications are systematically introduced. Finally, the advantages and disadvantages of each method are analyzed and summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X.S. Si, W. Wang, C.H. Hu, D.H. Zhou, Remaining useful life estimation—a review on the statistical data driven approaches. Eur. J. Oper. Res. 213, 1–14 (2011)

    Article  Google Scholar 

  2. N. Li, Y. Lei, J. Lin, S.X. Ding, An improved exponential model for predicting remaining useful life of rolling element bearings. IEEE Trans. Industr. Electron. 62, 7762–7773 (2015)

    Article  Google Scholar 

  3. N.Z. Gebraeel, M.A. Lawley, R. Li, J.K. Ryan, Residual-life distributions from component degradation signals: a Bayesian approach. IIE Trans. 37, 543–557 (2005)

    Article  Google Scholar 

  4. X.S. Si, W.B. Wang, C.H. Hu, M.Y. Chen, D.H. Zhou, A Wiener-process-based degradation model with a recursive filter algorithm for remaining useful life estimation. Mech. Syst. Signal Process. 35, 219–237 (2013)

    Article  Google Scholar 

  5. ISO 13381-1, Condition Monitoring and Diagnostics of Machines-Prognostics-Part 1: General Guidelines (2015)

  6. A.K.S. Jardine, D.M. Lin, D. Banjevic, A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)

    Article  Google Scholar 

  7. A. Heng, S. Zhang, A.C.C. Tan, J. Mathew, Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23, 724–739 (2009)

    Article  Google Scholar 

  8. J.Z. Sikorska, M. Hodkiewicz, L. Ma, Prognostic modelling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25, 1803–1836 (2011)

    Article  Google Scholar 

  9. J. Lee, F.J. Wu, W.Y. Zhao, M. Ghaffari, L.X. Liao, D. Siegel, Prognostics and health management design for rotary machinery systems—reviews, methodology and applications. Mech. Syst. Signal Process. 42, 314–334 (2014)

    Article  Google Scholar 

  10. M.S. Kan, A.C.C. Tan, J. Mathew, A review on prognostic techniques for non-stationary and non-linear rotating systems. Mech. Syst. Signal Process. 62–63, 1–20 (2015)

    Article  Google Scholar 

  11. S. Cubillo, M. Perinpanayagam, Esperon-Miguez, a review of physics-based models in prognostics: application to gears and bearings of rotating machinery. Adv. Mech. Eng. 8, 1–21 (2016)

    Article  Google Scholar 

  12. J. Wang, R.X. Gao, Z. Yuan, Z. Fan, L. Zhang, A joint particle filter and expectation maximization approach to machine condition prognosis. J. Intell. Manuf. 25, 1–17 (2016)

    Google Scholar 

  13. J. Sun, H. Zuo, W. Wang, M.G. Pecht, Prognostics uncertainty reduction by fusing on-line monitoring data based on a state-space-based degradation model. Mech. Syst. Signal Process. 45, 396–407 (2014)

    Article  Google Scholar 

  14. C.H. Oppenheimer, K.A. Loparo, Physically Based Diagnosis and Prognosis of Cracked Rotor Shafts, in: Component and Systems Diagnostics, Prognostics, and Health Management II, (Orlando, 2002), pp. 1–11

  15. W. Ostachowicz, M. Krawczuk, Coupled torsional and bending vibrations of a rotor with an open crack. Arch. Appl. Mech. 62, 191–201 (1992)

    Article  Google Scholar 

  16. P. Baraldi, F. Mangili, E. Zio, A Kalman filter-based ensemble approach with application to turbine creep prognostics. IEEE Trans. Reliab. 61, 966–977 (2012)

    Article  Google Scholar 

  17. P. Baraldi, F. Mangili, E. Zio, Investigation of uncertainty treatment capability of model-based and data-driven prognostic methods using simulated data. Reliab. Eng. Syst. Safety. 112, 94–108 (2013)

    Article  Google Scholar 

  18. Y. Hu, P. Baraldi, F.D. Maio, E. Zio, Online performance assessment method for a model-based prognostic approach. IEEE Trans. Reliab. 65, 718–735 (2016)

    Article  Google Scholar 

  19. K.S. Chan, M.P. Enright, J.P. Moody, B. Hocking, S.H.K. Fitch, Life prediction for turbopropulsion systems under dwell fatigue conditions. J. Eng. Gas Turbines Power. 134, 1–8 (2012)

    Article  Google Scholar 

  20. K. El-Tawil, A.A. Jaoude, Stochastic and nonlinear-based prognostic model. Syst. Sci. Control Eng. 1, 66–81 (2013)

    Article  Google Scholar 

  21. D. Barraza-Barraza, V.G. Tercero-Gómez, M.G. Beruvides, J. Limón-Robles, An adaptive ARX model to estimate the RUL of aluminum plates based on its crack growth. Mech. Syst. Signal Process. 82, 519–536 (2017)

    Article  Google Scholar 

  22. R. Gumiński, S. Radkowski, The use of logistic model in RUL assessment. J. Phys.: Conf. Ser. (2017). https://doi.org/10.1088/1742-6596/936/1/012080

    Article  Google Scholar 

  23. H. TzuHsuan, C. YuanJen, H. HeKai, C. TsungTi, H. PoWen, Predicting the remaining useful life of landing gear with prognostics and health management (PHM). Aerospace. 9(8), 646 (2022)

    Google Scholar 

  24. T. Escobet, J. Quevedo, V. Puig, A Fault/Anomaly System Prognosis Using a Data-Driven Approach Considering Uncertainty, in International Joint Conference on Neural Networks, (IEEE, 2012), pp. 1–7

  25. C.J. Lu, W.Q. Meeker, Using degradation measures to estimate a time-to-failure distribution. Technometrics. 35, 161–174 (1993)

    Article  Google Scholar 

  26. W.Q. Meeker, L.A. Escobar, C.J. Lu, Accelerated degradation tests: modeling and analysis. Technometrics. 40, 89–99 (1998)

    Article  Google Scholar 

  27. J.I. Park, S.J. Bae, Direct prediction methods on lifetime distribution of organic light-emitting diodes from accelerated degradation tests. IEEE Trans. Reliab. 59, 74–90 (2010)

    Article  Google Scholar 

  28. F.C. Zegarra, J. Vargas-Machuca, A.M. Coronado, Tool wear and remaining useful life (RUL) prediction based on reduced feature set and Bayesian hyperparameter optimization. Prod. Eng. 16(4), 465–480 (2022)

    Article  Google Scholar 

  29. R. Zhou, N. Gebraeel, N. Serban, Degradation modeling and monitoring of truncated degradation signals. IIE Trans. 44, 793–803 (2012)

    Article  Google Scholar 

  30. T. Yan, D. Wang, T. Xia, L. Xi, A generic framework for degradation modeling based on fusion of spectrum amplitudes. IEEE Trans. Autom. Sci. Eng. PP(99), 1–12 (2020)

    Article  Google Scholar 

  31. W. Wang, B. Hussin, T. Jefferis, A case study of condition based maintenance modelling based upon the oil analysis data of marine diesel engines using stochastic filtering. Int. J. Prod. Econ. 136, 84–92 (2012)

    Article  Google Scholar 

  32. W. Wang, A two-stage prognosis model in condition based maintenance. Eur. J. Oper. Res. 182, 1177–1187 (2007)

    Article  Google Scholar 

  33. M.J. Carr, W. Wang, Modeling failure modes for residual life prediction using stochastic filtering theory. IEEE Trans. Reliab. 59, 346–355 (2010)

    Article  Google Scholar 

  34. M.J. Carr, W. Wang, An approximate algorithm for prognostic modelling using condition monitoring information. Eur. J. Oper. Res. 211, 90–96 (2011)

    Article  Google Scholar 

  35. K.A. Doksum, A. Hbyland, Models for variable-stress accelerated life testing experiments based on Wener processes and the inverse Gaussian distribution. Technometrics. 34, 74–82 (1992)

    Article  Google Scholar 

  36. G.A. Whitmore, F. Schenkelberg, Modelling accelerated degradation data using Wiener diffusion with a time scale transformation. Lifetime Data Anal. 3, 27–45 (1997)

    Article  CAS  Google Scholar 

  37. S.-T. Tseng, J. Tang, I.-H. Ku, Determination of burn-in parameters and residual life for highly reliable products. Naval Res. Logist. 50, 1–14 (2003)

    Article  Google Scholar 

  38. S.-T. Tseng, C.-Y. Peng, Optimal burn-in policy by using an integrated Wiener process. IIE Trans. 36, 1161–1170 (2004)

    Article  Google Scholar 

  39. W.J. Park, Padgett, accelerated degradation models for failure based on geometric Brownian motion and gamma processes. Lifetime Data Anal. 11, 511–527 (2005)

    Article  Google Scholar 

  40. W.J. Park, Padgett, New cumulative damage models for failure using stochastic processes as initial damage. IEEE Trans. Reliab. 54, 530–540 (2005)

    Article  Google Scholar 

  41. W.J. Park, Padgett, Stochastic degradation models with several accelerating variables. IEEE Trans. Reliab. 55, 379–390 (2006)

    Article  Google Scholar 

  42. X.S. Si, W.B. Wang, C.H. Hu, D.H. Zhou, M.G. Pecht, Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Trans. Reliab. 61, 50–67 (2012)

    Article  Google Scholar 

  43. X. Fang, R. Zhou, N. Gebraeel, An adaptive functional regression-based prognostic model for applications with missing data. Reliab. Eng. Syst. Safety. 133, 266–274 (2015)

    Article  Google Scholar 

  44. C. Paroissin, Inference for the Wiener process with random initiation time. IEEE Trans. Reliab. 65, 147–157 (2016)

    Article  Google Scholar 

  45. Z.X. Zhang, X.S. Si, C.H. Hu, An age- and state-dependent nonlinear prognostic model for degrading systems. IEEE Trans. Reliab. 64, 1214–1228 (2015)

    Article  Google Scholar 

  46. L. Bian, N. Gebraeel, Stochastic modeling and real-time prognostics for multi-component systems with degradation rate interactions. IIE Trans. 46, 470–482 (2014)

    Article  Google Scholar 

  47. B. Yan, X. Ma, G. Huang, Y. Zhao, Two-stage physics-based Wiener process models for online RUL prediction in field vibration data. Mech. Syst. Signal Process. 152, 107378 (2020)

    Article  Google Scholar 

  48. Y. Wen, J. Wu, D. Das, T.L.B. Tseng, Degradation modeling and RUL prediction using Wiener process subject to multiple change points and unit heterogeneity. Reliab. Eng. Syst. Saf. (2018). https://doi.org/10.1016/j.ress.2018.04.005

    Article  Google Scholar 

  49. J.P. Kharoufeh, Explicit results for wear processes in a Markovian environment. Oper. Res. Lett. 31, 237–244 (2003)

    Article  Google Scholar 

  50. J.P. Kharoufeh, S.M. Cox, Stochastic models for degradation-based reliability. IIE Trans. 37, 533–542 (2005)

    Article  Google Scholar 

  51. J.P. Kharoufeh, C.J. Solo, M.Y. Ulukus, Semi-Markov models for degradation-based reliability. IIE Trans. 42, 599–612 (2010)

    Article  Google Scholar 

  52. M. Kurt, J.P. Kharoufeh, Optimally maintaining a Markovian deteriorating system with limited imperfect repairs. Eur. J. Oper. Res. 205, 368–380 (2010)

    Article  Google Scholar 

  53. M. Giorgio, M. Guida, G. Pulcini, An age- and state-dependent Markov model for degradation processes. IIE Trans. 43, 621–632 (2011)

    Article  Google Scholar 

  54. Y. Liu, M.J. Zuo, Y.-F. Li, H.-Z. Huang, Dynamic reliability assessment for multi-state systems utilizing system-level inspection data. IEEE Trans. Reliab. 64, 1287–1299 (2015)

    Article  Google Scholar 

  55. D. Ying, D. Chaoqun, W. Tonghai, Lubricating oil deterioration modeling and remaining useful life prediction based on hidden semi-Markov modeling. Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. (2022). https://doi.org/10.1177/13506501211038106

    Article  Google Scholar 

  56. Z. Yunshui, C. Weimin, Health indicator construction and life prediction of the point switch machine. J. Failure Anal. Prevent. (2022). https://doi.org/10.1007/S11668-022-01382-0

    Article  Google Scholar 

  57. H. Zhang, M. Chen, J. Shang, C. Yang, Y. Sun, Stochastic process-based degradation modeling and RUL prediction: from Brownian motion to fractional Brownian motion. Sci. China (Inf. Sci.). 64(07), 5–24 (2021)

    Google Scholar 

  58. C. Bunks, D. McCarthy, T. Al-Ani, Condition-based maintenance of machines using hidden Markov models. Mech. Syst. Signal Process. 14, 597–612 (2000)

    Article  Google Scholar 

  59. D. Lin, V. Makis, Recursive filters for a partially observable system subject to random failure. Adv. Appl. Probab. 35, 207–227 (2003)

    Article  Google Scholar 

  60. R.B. Camci, Chinnam, Health-state estimation and prognostics in machining processes. IEEE Trans. Automat. Sci. Eng. 7, 581–597 (2010)

    Article  Google Scholar 

  61. S.S.H. Zaidi, S. Aviyente, M. Salman, K.-K. Shin, E.G. Strangas, Prognosis of gear failures in DC starter motors using hidden Markov models. IEEE Trans. Industr. Electron. 58, 1695–1706 (2011)

    Article  Google Scholar 

  62. S.-Z. Yu, Hidden semi-Markov models. Artif. Intell. 174, 215–243 (2010)

    Article  Google Scholar 

  63. M. Dong, D. He, Hidden semi-Markov model-based methodology for multi-sensor equipment health diagnosis and prognosis. Eur. J. Oper. Res. 178, 858–878 (2007)

    Article  Google Scholar 

  64. M. Dong, D. He, A segmental hidden semi-Markov model (HSMM)-based diagnostics and prognostics framework and methodology. Mech. Syst. Signal Process. 21, 2248–2266 (2007)

    Article  Google Scholar 

  65. K. Medjaher, D.A. Tobon-Mejia, N. Zerhouni, Remaining useful life estimation of critical components with application to bearings. IEEE Trans. Reliab. 61, 292–302 (2012)

    Article  Google Scholar 

  66. D.A. Tobon-Mejia, K. Medjaher, N. Zerhouni, G. Tripot, A data-driven failure prognostics method based on mixture of gaussians hidden Markov models. IEEE Trans. Reliab. 61, 491–503 (2012)

    Article  Google Scholar 

  67. Y. Peng, M. Dong, A prognosis method using age-dependent hidden semi-Markov model for equipment health prediction. Mech. Syst. Signal Process. 25, 237–252 (2011)

    Article  Google Scholar 

  68. V. Makis, A.K. Jardine, Optimal replacement in the proportional hazards model, INFOR: Inform. Syst. Oper. Res. 30, 172–183 (1992)

    Google Scholar 

  69. V. Makis, X. Jiang, Optimal replacement under partial observations. Math. Oper. Res. 28, 382–394 (2003)

    Article  Google Scholar 

  70. D. Kumar, B. Klefsjö, Proportional hazards model: a review. Reliab. Eng. Syst. Safety. 44, 177–188 (1994)

    Article  Google Scholar 

  71. D. Jardine, V. Banjevic, Makis, Optimal replacement policy and the structure of software for condition-based maintenance. J. Qual. Maint. Eng. 3, 109–119 (1997)

    Article  Google Scholar 

  72. D. Banjevic, A. Jardine, V. Makis, M. Ennis, A control-limit policy and software for condition-based maintenance optimization, INFOR: Inform. Syst. Oper. Res. 39, 32–50 (2001)

    Google Scholar 

  73. P. Vlok, J. Coetzee, D. Banjevic, A. Jardine, V. Makis, Optimal component replacement decisions using vibration monitoring and the proportionalhazards model. J. Oper. Res. Soc. 53, 193–202 (2002)

    Article  Google Scholar 

  74. Y. Gu, Q. Bi, G. Qiu, Practical health indicator construction methodology for bearing ensemble remaining useful life prediction with ISOMAP-DE and ELM-WPHM. Measure. Sci. Technol. (2022). https://doi.org/10.1088/1361-6501/AC3855

    Article  Google Scholar 

  75. D. Banjevic, A. Jardine, Calculation of reliability function and remaining useful life for a Markov failure time process. IMA J. Manage. Math. 17, 115–130 (2006)

    Article  Google Scholar 

  76. E.A. Elsayed, H. Zhang, Design of PH-based accelerated life testing plans under multiple-stress-type. Reliab. Eng. Syst. Safety. 92, 286–292 (2007)

    Article  Google Scholar 

  77. J. Van Noortwijk, A survey of the application of gamma processes in maintenance. Reliab. Eng. Syst. Safety. 94, 2–21 (2009)

    Article  Google Scholar 

  78. S.P. Kuniewski, J.A. van der Weide, J.M. van Noortwijk, Sampling inspection for the evaluation of time-dependent reliability of deteriorating systems under imperfect defect detection. Reliab. Eng. Syst. Safety. 94, 1480–1490 (2009)

    Article  Google Scholar 

  79. V. Bagdonavicius, M.S. Nikulin, Estimation in degradation models with explanatory variables. Lifetime Data Anal. 7, 85–103 (2001)

    Article  CAS  Google Scholar 

  80. J. Lawless, M. Crowder, Covariates and random effects in a gamma process model with application to degradation and failure. Lifetime Data Anal. 10, 213–227 (2004)

    Article  Google Scholar 

  81. S. Chakraborty, N. Gebraeel, M. Lawley, H. Wan, Residual-life estimation for components with non-symmetric priors. IIE Trans. 41, 372–387 (2009)

    Article  Google Scholar 

  82. C.-C. Tsai, S.-T. Tseng, N. Balakrishnan, Optimal burn-in policy for highly reliable products using gamma degradation process. IEEE Trans. Reliab. 60, 234–245 (2011)

    Article  Google Scholar 

  83. C.-C. Tsai, S.-T. Tseng, N. Balakrishnan, Mis-specification analyses of gamma and Wiener degradation processes. J. Stat. Plan. Infer. 141, 3725–3735 (2011)

    Article  Google Scholar 

  84. C.-C. Tsai, S.-T. Tseng, N. Balakrishnan, Optimal design for degradation tests based on gamma processes with random effects. IEEE Trans. Reliab. 61, 604–613 (2012)

    Article  Google Scholar 

  85. X. Wang, D. Xu, An inverse Gaussian process model for degradation data. Technometrics. 52, 188–197 (2010)

    Article  Google Scholar 

  86. Z.-S. Ye, N. Chen, The inverse Gaussian process as a degradation model. Technometrics. 56, 302–311 (2014)

    Article  Google Scholar 

  87. Z.-S. Ye, L.-P. Chen, L.C. Tang, M. Xie, Accelerated degradation test planning using the inverse Gaussian process. IEEE Trans. Reliab. 63, 750–763 (2014)

    Article  Google Scholar 

  88. N. Chen, Z.-S. Ye, Y. Xiang, L. Zhang, Condition-based maintenance using the inverse Gaussian degradation model. Eur. J. Oper. Res. 243, 190–199 (2015)

    Article  Google Scholar 

  89. H. Qin, S. Zhang, W. Zhou, Inverse Gaussian process-based corrosion growth modeling and its application in the reliability analysis for energy pipelines. Front. Struct. Civil Eng. 7, 276–287 (2013)

    Article  Google Scholar 

  90. S. Zhang, W. Zhou, H. Qin, Inverse Gaussian process-based corrosion growth model for energy pipelines considering the sizing error in inspection data. Corros. Sci. 73, 309–320 (2013)

    Article  CAS  Google Scholar 

  91. C.-Y. Peng, Inverse Gaussian processes with random effects and explanatory variables for degradation data. Technometrics. 57, 100–111 (2015)

    Article  Google Scholar 

  92. Z. Liu, X. Ma, J. Yang, Y. Zhao, Reliability modeling for systems with multiple degradation processes using inverse Gaussian process and copulas. Math. Probl Eng. 2014, 1–10 (2014)

    CAS  Google Scholar 

  93. W. Peng, Y.-F. Li, Y.-J. Yang, S.-P. Zhu, H.-Z. Huang, Bivariate analysis of incomplete degradation observations based on inverse Gaussian processes and copulas. IEEE Trans. Reliab. 65, 624–639 (2016)

    Article  Google Scholar 

  94. G. Giner, G.K. Smyth, Statmod: Probability calculations for the inverse Gaussian distribution. The R J. 8, 1–18 (2016)

    Article  Google Scholar 

  95. J.-B. Pan, J. Liu, Cao, Remaining useful life estimation using an inverse Gaussian degradation model. Neurocomputing. 185, 64–72 (2016)

    Article  Google Scholar 

  96. N.Z. Gebraeel, M.A. Lawley, A neural network degradation model for computing and updating residual life distributions. IEEE Trans. Autom. Sci. Eng. 5, 154–163 (2008)

    Article  Google Scholar 

  97. S.-J. Wu, N. Gebraeel, M.A. Lawley, Y. Yih, A neural network integrated decision support system for condition-based optimal predictive maintenance policy, IEEE Trans. Syst. Man Cybern-Part A: Syst. Hum. 37, 226–236 (2007)

    Article  Google Scholar 

  98. Z. Tian, An artificial neural network method for remaining useful life prediction of equipment subject to condition monitoring. J. Intell. Manuf. 23, 227–237 (2012)

    Article  Google Scholar 

  99. Z. Tian, A Neural Network Approach for Remaining Useful Life Prediction Utilizing Both Failure and Suspension Data, in Reliability and Maintainability Symposium, (IEEE, 2010), pp. 1–6

  100. M. Elforjani, Estimation of remaining useful life of slow speed bearings using acoustic emission signals. J. Nondestr. Eval. 35, 32–62 (2016)

    Article  Google Scholar 

  101. B. Oguz, J.A. Jones, S. Sankararaman, I. Roychoudhury, K. Goebel, A neural network framework for similarity-based prognostics. MethodsX (2019). https://doi.org/10.1016/j.mex.2019.02.015

    Article  Google Scholar 

  102. C. Sbarufatti, M. Corbetta, A. Manes, M. Giglio, Sequential Monte-Carlo sampling based on a committee of artificial neural networks for posterior state estimation and residual lifetime prediction. Int. J. Fatigue. 83, 10–23 (2016)

    Article  Google Scholar 

  103. D. She, M. Jia, A BiGRU method for remaining useful life prediction of machinery. Measurement (2021). https://doi.org/10.1016/j.measurement.2020.108277

    Article  Google Scholar 

  104. R. Zemouri, D. Racoceanu, N. Zerhouni, Recurrent radial basis function network for time-series prediction. Eng. Appl. Artif. Intell. 16, 453–463 (2003)

    Article  Google Scholar 

  105. D. Liu, W. Xie, H. Liao, Y. Peng, An integrated probabilistic approach to lithium-ion battery remaining useful life estimation. IEEE Trans. Instrum. Meas. 64, 660–670 (2014)

    Google Scholar 

  106. J.-S.R. Jang, C.-T. Sun, Neuro-Fuzzy and Soft Computing. (Prentice-Hall Inc, Englewood, 1997)

    Google Scholar 

  107. W. Wang, M.F. Golnaraghi, F. Ismail, Prognosis of machine health condition using neuro-fuzzy systems. Mech. Syst. Signal Process. 18, 813–831 (2004)

    Article  Google Scholar 

  108. M. He, Y. Zhou, Y. Li, W. Gaofeng, G. Tang, Long short-term memory network with multi-resolution singular value decomposition for prediction of bearing performance degradation. Measurement (2020). https://doi.org/10.1016/j.measurement.2020.107582

    Article  Google Scholar 

  109. Y. Zijian, Z. Qiang, S. Siyu, N. Tianlin, Z. Yuwei, Rolling bearing health indicator extraction and RUL prediction based on multi-scale convolutional autoencoder. Appl. Sci. (2022). https://doi.org/10.3390/APP12115747

    Article  Google Scholar 

  110. M. Sayah, D. Guebli, Z.A. Masry, N. Zerhouni, Robustness testing framework for RUL prediction Deep LSTM networks. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2020.07.003

    Article  Google Scholar 

  111. C. Dingliang, Q. Yi, W. Yi, Z. Jianghong, Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction. ISA Trans. (2020). https://doi.org/10.1016/J.ISATRA.2020.12.052

    Article  Google Scholar 

  112. H. Cheng-Geng, H. Hong-Zhong, L. Yan-Feng, P. Weiwen, A novel deep convolutional neural network-bootstrap integrated method for RUL prediction of rolling bearing. J. Manuf. Syst. (2021). https://doi.org/10.1016/J.JMSY.2021.03.012

    Article  Google Scholar 

  113. C. Han, K. Xianguang, W. Qibin, M. Hongbo, Y. Shengkang, The two-stage RUL prediction across operation conditions using deep transfer learning and insufficient degradation data. Reliab. Eng. Syst. Safety. (2022). https://doi.org/10.1016/J.RESS.2022.108581

    Article  Google Scholar 

  114. W. Chenyang, J. Wanlu, Y. Xukang, Z. Shuqing, RUL prediction of rolling bearings based on a DCAE and CNN. Appl. Sci. 11(23), 974 (2021). https://doi.org/10.3390/APP112311516

    Article  Google Scholar 

  115. C. Wenbai, C. Weizhao, L. Huixiang, W. Yiqun, G.Y. Bi Chunli, A RUL prediction method of small sample equipment based on DCNN-BiLSTM and domain adaptation. Mathematics. 10(7), 5485 (2022). https://doi.org/10.3390/MATH10071022

    Article  Google Scholar 

  116. T. Lin, H. Wang, X. Guo, P. Wang, L. Song, A novel prediction network for remaining useful life of rotating machinery. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/S00170-021-08351-1

    Article  Google Scholar 

  117. K. Ziqiu, C. Cagatay, T. Bedir, Remaining useful life (RUL) prediction of equipment in production lines using artificial neural networks. Sensors. 21(3), 567 (2021). https://doi.org/10.3390/S21030932

    Article  Google Scholar 

  118. Y. Lei, Z. He, Y. Zi, Q. Hu, Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAS. Mech. Syst. Signal Process. 21, 2280–2294 (2007)

    Article  Google Scholar 

  119. W. Wang, An adaptive predictor for dynamic system forecasting. Mech. Syst. Signal Process. 21, 809–823 (2007)

    Article  Google Scholar 

  120. W. Wang, J. Vrbanek, An evolving fuzzy predictor for industrial applications. IEEE Trans. Fuzzy Syst. 16, 1439–1449 (2008)

    Article  Google Scholar 

  121. T. Marios, S. Chrysostomos, Introducing fuzzy cognitive map for predicting engine’s health status. IFAC PapersOnLine (2022). https://doi.org/10.1016/J.IFACOL.2022.04.201

    Article  Google Scholar 

  122. J. Liu, W. Wang, F. Golnaraghi, A multi-step predictor with a variable input pattern for system state forecasting. Mech. Syst. Signal Process. 23, 1586–1599 (2009)

    Article  Google Scholar 

  123. Z. Fagang, C. Jin, G. Lei, L. Xinglin, Neuro-fuzzy based condition prediction of bearing health. J. Vib. Control. 15, 1079–1091 (2009)

    Article  Google Scholar 

  124. V.T. Tran, B.-S. Yang, A.C.C. Tan, Multi-step ahead direct prediction for the machine condition prognosis using regression trees and neuro-fuzzy systems. Expert Syst. Appl. 36, 9378–9387 (2009)

    Article  Google Scholar 

  125. C. Chen, B. Zhang, G. Vachtsevanos, M. Orchard, Machine condition prediction based on adaptive neuro–fuzzy and high-order particle filtering. IEEE Trans. Industr. Electron. 58, 4353–4364 (2011)

    Article  Google Scholar 

  126. C. Chen, G. Vachtsevanos, M.E. Orchard, Machine remaining useful life prediction: an integrated adaptive neuro-fuzzy and high-order particle filtering approach. Mech. Syst. Signal Process. 28, 597–607 (2012)

    Article  Google Scholar 

  127. S. Hussain, H.A. Gabbar, Vibration analysis and time series prediction for wind turbine gearbox prognostics. IJPHM Spec. Issue Wind Turbine PHM. 1, 69–80 (2013)

    Google Scholar 

  128. V.N. Vapnik, An overview of statistical learning theory. IEEE Trans. Neural Netw. 10, 988–999 (1999)

    Article  CAS  Google Scholar 

  129. A. Widodo, B.-S. Yang, Machine health prognostics using survival probability and support vector machine. Expert Syst. Appl. 38, 8430–8437 (2011)

    Article  Google Scholar 

  130. V.T. Tran, B.-S. Yang, An intelligent condition-based maintenance platform for rotating machinery. Expert Syst. Appl. 39, 2977–2988 (2012)

    Article  Google Scholar 

  131. J. Liu, V. Vitelli, E. Zio, R. Seraoui, A novel dynamic-weighted probabilistic support vector regression-based ensemble for prognostics of time series data. IEEE Trans. Reliab. 64, 1203–1213 (2015)

    Article  Google Scholar 

  132. J. Liu, E. Zio, An adaptive online learning approach for support vector regression: Online-SVR-FID. Mech. Syst. Signal Process. 76–77, 796–809 (2016)

    Article  Google Scholar 

  133. L. Yuxiong, H. Xianzhen, Z. Chengying, D. Pengfei, A novel remaining useful life prediction method based on multi-support vector regression fusion and adaptive weight updating. ISA Trans. (2022). https://doi.org/10.1016/J.ISATRA.2022.04.042

    Article  Google Scholar 

  134. L. Yifan, X. Yongyong, P. Baisong, S. Luojie, A hybrid remaining useful life prediction method for cutting tool considering the wear state. Int. J. Adv. Manuf. Technol. (2022). https://doi.org/10.1007/S00170-022-09417-4

    Article  Google Scholar 

  135. M. Yan, X. Wang, B. Wang, M. Chang, I. Muhammad, Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. ISA Trans. (2020). https://doi.org/10.1016/j.isatra.2019.08.058

    Article  Google Scholar 

  136. C.M. Bishop, M.E. Tipping, Variational Relevance Vector Machines, in 16th Conference on Uncertainty in Artificial Intelligence, (Morgan Kaufmann Publishers Inc., 2000), pp. 46–53

  137. M.E. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    Google Scholar 

  138. Y. Xianxian, K. Linlin, W. Xiukun, Z. Haichao, Side wear prediction of a subway outer rail on small radius curves based on system dynamics of discrete supported track. Discrete Dyn. Nat. Soc. (2022). https://doi.org/10.1155/2022/7037655

    Article  Google Scholar 

  139. X. Wang, B. Jiang, L. Ningyun, Adaptive relevant vector machine based RUL prediction under uncertain conditions. ISA Trans. (2019). https://doi.org/10.1016/j.isatra.2018.11.024

    Article  Google Scholar 

  140. W.J. Padgett, M.A. Tomlinson, Inference from accelerated degradation and failure data based on Gaussian process models. Lifetime Data Anal. 10, 191–206 (2004)

    Article  CAS  Google Scholar 

  141. C.E. Rasmussen, Gaussian Processes in Machine Learning Advanced Lectures on Machine Learning. (Springer, Berlin, 2004)

    Google Scholar 

  142. K. Goebel, B. Saha, A. Saxena, N. Mct, N. Riacs, A comparison of three data-driven techniques for prognostics, in 62nd Meeting of the Society For Machinery Failure Prevention Technology, 2008, pp. 119–131

  143. S. Saha, B. Saha, A. Saxena, K. Goebel, Distributed Prognostic Health Management with Gaussian Process Regression, in IEEE Aerospace Conference, (IEEE, 2010), pp. 1–8

  144. M.F. Huber, Recursive Gaussian process: on-line regression and learning. Pattern Recogn. Lett. 45, 85–91 (2014)

    Article  Google Scholar 

  145. D. Liu, J. Pang, J. Zhou, Y. Peng, M. Pecht, Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectron. Reliab. 53, 832–839 (2013)

    Article  CAS  Google Scholar 

  146. S. Aye, P. Heyns, An integrated Gaussian process regression for prediction of remaining useful life of slow speed bearings based on acoustic emission. Mech. Syst. Signal Process. 84, 485–498 (2017)

    Article  Google Scholar 

  147. B. Saha, K. Goebel, S. Poll, J. Christophersen, Prognostics methods for battery health monitoring using a Bayesian framework. IEEE Trans. Instrum. Meas. 58, 291–296 (2009)

    Article  Google Scholar 

  148. J. Liu, W. Wang, F. Ma, Y.B. Yang, C.S. Yang, A data-model-fusion prognostic framework for dynamic system state forecasting. Eng. Appl. Artif. Intell. 25, 814–823 (2012)

    Article  Google Scholar 

  149. P. Baraldi, M. Compare, S. Sauco, E. Zio, Ensemble neural network-based particle filtering for prognostics. Mech. Syst. Signal Process. 41, 288–300 (2013)

    Article  Google Scholar 

  150. B.P. Wang, Prognostics using an adaptive self-cognizant dynamic system approach. IEEE Trans. Reliab. 65, 1427–1437 (2016)

    Article  CAS  Google Scholar 

  151. Q. Tian, H. Wang, An ensemble learning and RUL prediction method based on bearings degradation indicator construction. Appl. Sci. (2020). https://doi.org/10.3390/app10010346

    Article  Google Scholar 

  152. I. Remadna, S.L. Terrissa, M. Sayah, S. Ayad, N. Zerhouni, Boosting RUL prediction using a hybrid deep CNN-BLSTM architecture. Autom. Control Comput. Sci. (2022). https://doi.org/10.3103/S014641162204006X

    Article  Google Scholar 

  153. Z. Lefa, Z. Yafei, Z. Tianyu, Deep learning-based remaining useful life prediction method with transformer module and random forest. Mathematics (2022). https://doi.org/10.3390/MATH10162921

    Article  Google Scholar 

  154. B. Christoph, K. Eckhard, V. Andreas, K. Marian, On the importance of temporal information for remaining useful life prediction of rolling bearings using a random forest regressor. Lubricants (2022). https://doi.org/10.3390/LUBRICANTS10040067

    Article  Google Scholar 

  155. Z. Ming, A. Nasser, Xu. Wang Zezhong, M.A. Yuchun, P. Michael, T. Dimitrios, Predictive maintenance for remanufacturing based on hybrid-driven remaining useful life prediction. Appl. Sci. (2022). https://doi.org/10.3390/APP12073218

    Article  Google Scholar 

  156. Y. Ming, L. Dun, Xu. Jiang Canghua, W.D. Bin, Z. Rensheng, Hybrid condition monitoring of nonlinear mechatronic system using biogeography-based optimization particle filter and optimized extreme learning machine. ISA Trans. (2022). https://doi.org/10.1016/J.ISATRA.2021.03.018

    Article  Google Scholar 

  157. L. Junqi, C. Chuanhai, L. Zhifeng, G. Jinyan, C. Weizheng, Stochastic hybrid system approach to task-orientated remaining useful life prediction under time-varying operating conditions. Reliab. Eng. Syst. Safety. (2022). https://doi.org/10.1016/J.RESS.2022.108568

    Article  Google Scholar 

  158. C. Sankavaram, B. Pattipati, A. Kodali, K. Pattipati, M. Azam, S. Kumar, M. Pecht, Model-Based and Data-Driven Prognosis of Automotive and Electronic Systems, in IEEE International Conference on Automation Science and Engineering, (IEEE, 2009), pp. 96–101

Download references

Acknowledgments

This work was supported by the Fundamental Research Funds for the Central Universities (ZY2104) and Major basic research projects of equipment (514010507-205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilong Gao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, J., Zhang, W., Jiang, Z. et al. A Review: Prediction Method for the Remaining Useful Life of the Mechanical System. J Fail. Anal. and Preven. 22, 2119–2137 (2022). https://doi.org/10.1007/s11668-022-01532-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11668-022-01532-4

Keywords

Navigation