Skip to main content
Log in

Modeling the Continuous Heat Generation in the Cold Spray Coating Process

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In cold spray, 5-150-µm particles (of metal, ceramic, composite, and other materials) are accelerated to supersonic velocities through a de Laval nozzle with an inert gas (generally He or N2) that can reach 1000 °C. In the process, the gas jet impingement on the target and the extreme plastic deformation of impacting particles cause heat generation in the coating layers and the substrate. The heat generation has been argued to cause residual stress, which may cause coating–substrate delamination. In this study, heat generation due to gas impingement and particle plastic deformation has been predicted from CFD and FEA simulations, respectively. Furthermore, a finite volume method has been presented for transiently simulating the coating buildup and bulk heat generation in the coating and the substrate. The model is intended to assist researchers to understand thermal affects in the coating process and help design more informed coating patterns to reduce negative thermal effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

\(A\) :

Cell surface area (m2)

\(Bi\) :

Biot number

\(C_{\text{m}}\) :

Solid material specific heat capacity \(( {\text{J}}/({\text{kg}}\;^\circ {\text{K}}))\)

\(C_{\text{p}}\) :

Fluid specific heat capacity \(( {\text{J}}/({\text{kg}}\;^\circ {\text{K}}))\)

\(D_{\text{e}}\) :

Nozzle exit diameter (m)

\(h_{\text{f}}\) :

Heat transfer coefficient \(( {\text{W}}/({\text{m}}^{2} \,^\circ {\text{K}}))\)

\(i\) :

x-axis index notation

\(j\) :

y-axis index notation

\(k\) :

z-axis index notation

\(k_{\text{f}}\) :

Fluid thermal conductivity \(( {\text{W}}/({\text{m}}\,^\circ {\text{K}}))\)

\(L_{\text{ch}}\) :

Characteristic length (m)

\(m_{\text{m}}\) :

Cell mass (kg)

\(m_{\text{in}}\) :

Mass input into the domain (kg)

\(\dot{m}_{\text{in}}\) :

Mass flux into the domain (deposition rate) (kg/s)

\(n\) :

Computational approximation factor

\(\overline{Nu}_{\text{L}}\) :

Average Nusselt number over a flat plate

\(Nu_{\text{jet}}\) :

Local Nusselt number on flat plate in impinging jet zone

\(Pr\) :

Prandtl number

\(r\) :

Radial distance from nozzle axis (m)

\(Re_{\text{L}}\) :

Reynolds number over flat plate

\(Re_{\text{jet}}\) :

Reynolds number for jet flow

\(\dot{q}\) :

Heat flux (W)

\(\dot{q}_{\text{surf}}\) :

Surface heat flux (W)

\(\dot{q}_{\text{cond}}\) :

Conductive surface heat flux (W)

\(\sum \dot{q}_{\text{conv}}\) :

Convective surface heat flux (W)

\(S_{\text{impact}}\) :

Thermal energy source generated from particle impact (W)

\(\varvec{S}_{{\varvec{impact}}}\) :

Thermal energy source generated from particle impact per volume \(( {\text{W/m}}^{3} )\)

\(t\) :

Time (s)

\(T\) :

Temperature (°K)

\(T_{\text{m}}\) :

Melting temperature (°K)

\(T_{\text{ref}}\) :

Reference fluid temperature (°K)

\(T_{\text{room}}\) :

Room temperature (°K)

\(U_{\text{pi}}\) :

Particle impact velocity (m/s)

\(U_{\infty }\) :

Far-field fluid velocity (m/s)

\(x\) :

Axis in Cartesian coordinate system (m)

\(x_{\text{N}}\) :

Nozzle x-coordinate position in the Cartesian coordinate system (m)

\(y\) :

Axis in Cartesian coordinate system (m)

\(y_{\text{N}}\) :

Nozzle y-coordinate position in the Cartesian coordinate system (m)

\(z\) :

Axis in Cartesian coordinate system (m)

\(z_{\text{adj}}\) :

Adjusted z-coordinate (m)

\(\alpha_{\text{m}}\) :

Solid material thermal diffusivity

\(\mu_{\text{f}}\) :

Fluid dynamic viscosity \(( {\text{kg}}/({\text{m}}\,{\text{s}}))\)

\(\mu_{{{\text{m}}x}}\) :

Mass flow distribution x-direction mean (m)

\(\mu_{{{\text{m}}y}}\) :

Mass flow distribution y-direction mean

\(\nabla\) :

Vector differential operator

\(\phi\) :

Temperature difference (°K)

\(\phi_{\text{avg}}\) :

Average temperature difference (°K)

\(\rho_{\text{f}}\) :

Fluid density \(( {\text{kg/m}}^{3} )\)

\(\rho_{\text{m}}\) :

Solid material density \(( {\text{kg/m}}^{3} )\)

\(\sigma_{{{\text{m}}x}}\) :

Mass flow distribution x-direction standard deviation (m)

\(\sigma_{{{\text{m}}y}}\) :

Mass flow distribution y-direction standard deviation (m)

\(\theta\) :

Non-dimensional temperature

\(\theta_{\text{aw}}\) :

Non-dimensional adiabatic wall temperature

\(\zeta\) :

Non-dimensional radial distance from nozzle axis

\(i\) :

x-axis index notation

\(j\) :

y-axis index notation

\(k\) :

z-axis index notation

\({\text{m}}\) :

Melting

\({\text{N}}\) :

Nozzle

\(t\) :

Time index notation

CFD:

Computational fluid dynamics

FEA:

Finite element analysis

PDF:

Probability density function

TE:

Thermal energy

References

  1. V. Champagne, The Cold Spray Materials Deposition Process: Fundamentals and Applications, Woodhead Publishing Limited, Sawston, 2007, p 1-362

    Book  Google Scholar 

  2. A. Papyrin, V. Kosarev, S. Klinkov, A. Alkhimov, and V. Fomin, Cold Spray Technology, 1st ed., Elsevier Ltd., Amsterdam, 2007, p 1-328

    Book  Google Scholar 

  3. J. Villafuerte, Modern Cold Spray: Materials, Process, and Applications, Springer, Boston, 2015

    Book  Google Scholar 

  4. H. Assadi, H. Kreye, F. Gartner, and T. Klassen, Cold Spraying: A Materials Perspective, Acta Mater., 2016, 116(1), p 382-407

    Article  CAS  Google Scholar 

  5. F.Z. Shaikh, H.D. Blair, R.J. Tabaczynski, and T.Y. Pan, Gas-Dynamic Cold Spraying Lining for Aluminum Engine Block Cylinders, U.S.P.a.T. Office Ed., 2002

  6. M. Fukumoto, M. Mashiko, M. Yamada, and E. Yamaguchi, Deposition Behavior of Copper Fine Particles onto Flat Substrate Surface in Cold Spraying, J. Therm. Spray Technol., 2009, 19(1-2), p 89-94

    Article  CAS  Google Scholar 

  7. D.Y. Kim, J.J. Park, J.G. Lee, D. Kim, S.J. Tark, S. Ahn, J.H. Yun, J. Gwak, K.H. Yoon, S. Chandra, and S.S. Yoon, Cold Spray Deposition of Copper Electrodes on Silicon and Glass Substrates, J. Therm. Spray Technol., 2013, 22(7), p 1092-1102

    Article  CAS  Google Scholar 

  8. T. Marrocco, D.G. McCartney, P.H. Shipway, and A.J. Sturgeon, Production of Titanium Deposits by Cold Gas Dynamic Spray: Numerical Modeling and Experimental Characterization, J. Therm. Spray Technol., 2006, 15(2), p 263-272

    Article  CAS  Google Scholar 

  9. M.R. Rokni, C.A. Widener, O.C. Ozdemir, and G.A. Crawford, Microstructure and Mechanical Properties of Cold Sprayed 6061 Al in As-Sprayed and Heat Treated Condition, Surf. Coat. Technol., 2017, 309, p 641-650

    Article  CAS  Google Scholar 

  10. M. Gardon, A. Latorre, M. Torrell, S. Dosta, J. Fernandez, and J.M. Guilemany, Cold Gas Spray Titanium Coatings onto a Biocompatible Polymer, Mater. Lett., 2013, 106, p 97-99

    Article  CAS  Google Scholar 

  11. M. Winnicki, A. Malachowska, T. Piwowarczyk, M. Rutkowska-Gorczyca, and A. Ambroziak, The Bond Strength of Al + Al2O3 Cermet Coatings Deposited by Low-Pressure Cold Spraying, Arch. Civ. Mech. Eng., 2016, 16(4), p 743-752

    Article  Google Scholar 

  12. V. Champagne, The Repair of Magnesium Rotorcraft Components by Cold Spray, J. Fail. Anal. Prev., 2008, 8, p 164-175

    Article  Google Scholar 

  13. M.D. Trexler, R. Carter, W.S. De Rosset, D. Gray, D. Helfritch, and V.K. Champagne, Cold Spray Fabrication of Refractory Materials for Gun Barrel Liner Applications, Mater. Manuf. Process., 2012, 27, p 820-824

    Article  CAS  Google Scholar 

  14. C.A. Widener, M.J. Carter, O.C. Ozdemir, R.H. Hrabe, B. Hoiland, T.E. Stamey, V.K. Champagne, and T.J. Eden, Application of High-Pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator, J. Therm. Spray Technol., 2016, 25(1-2), p 193-201

    Article  CAS  Google Scholar 

  15. M. Martin, Toolpath and Build-up Strategies for Cold Spray Additive Manufacturing, ASM International, Edmonton, 2016

    Google Scholar 

  16. O.C. Ozdemir and C.A. Widener, Better Predictions using 3D CFD to Inform Cold Spray Process Development, North American Cold Spray Conference, Nov 30–Dec 1, 2016 (Edmonton, Alberta, Canada), ASM International

  17. S. Camilleri, On Demand High Volume 3D Metal Printing, Cold Spray Action Team Meeting, U.S. Army Research Laboratory, 2017

  18. A.M. Birt, V.K. Champagne, Jr., R.D. Sisson, Jr., and D. Apelian, Microstructural Analysis of Ti-6Al-4V Powder for Cold Gas Dynamic Spray Applications, Adv. Powder Technol., 2015, 26, p 1335-1347

    Article  CAS  Google Scholar 

  19. V.S. Bhattiprolu, K.W. Johnson, O.C. Ozdemir, and G.A. Crawford, Influence of Feedstock Powder and Cold Spray Processing Parameters on Microstructure and Mechanical Properties of Ti-6Al-4V, Surf. Coat. Technol., 2018, 335, p 1-12

    Article  CAS  Google Scholar 

  20. A.P. Alkhimov, V.F. Kosarev, and S.V. Klinkov, The Features of Cold Spray Nozzle Design, J. Therm. Spray Technol., 2001, 10(2), p 375-381

    Article  Google Scholar 

  21. D. Helfritch and V. Champagne, A Model Study of Powder Particle Size Effects in Cold Spray Deposition, U.S.A.R. Laboratory Ed., 2008

  22. B. Jodoin, F. Raletz, and M. Vardelle, Cold Spray Modeling and Validation Using an Optical Diagnostic Method, Surf. Coat. Technol., 2006, 200, p 4424-4432

    Article  CAS  Google Scholar 

  23. O.C. Ozdemir and C.A. Widener, Influence of Powder Injection Parameters in High-Pressure Cold Spray, J. Therm. Spray Technol., 2017, 26(7), p 1411-1422

    Article  Google Scholar 

  24. V.F. Kosarev, S.V. Klinkov, A.P. Alkhimov, and A.N. Papyrin, On Some Apects of Gas Dynamics of the Cold Spray Process, J. Therm. Spray Technol., 2002, 12(2), p 265-281

    Article  Google Scholar 

  25. M.C. Meyer, S. Yin, K.A. McDonnell, O. Stier, and R. Lupoi, Feed Rate Effect on Particulate Acceleration in Cold Spray Under Low Stagnation Pressure Conditions, Surf. Coat. Technol., 2016, 304, p 237-245

    Article  CAS  Google Scholar 

  26. A.G. McDonald, A.N. Ryabinin, E. Irissou, and J.-G. Legoux, Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, J. Therm. Spray Technol., 2012, 22(2-3), p 391-397

    Article  CAS  Google Scholar 

  27. A.N. Ryabinin, E. Irissou, A. McDonald, and J.-G. Legoux, Simulation of Gas-Substrate Heat Exchange During Cold-Gas Dynamic Spraying, Int. J. Therm. Sci., 2012, 56, p 12-18

    Article  CAS  Google Scholar 

  28. G. Benenati and R. Lupoi, Development of a Deposition Strategy in Cold Spray for Additive Manufacturing of Residual Stresses, Procedia CIRP, 2016, 55, p 101-108

    Article  Google Scholar 

  29. B. Samareh and A. Dolatabadi, A Three-Dimensional Analysis of the Cold Spray Process: The Effects of Substrate Location and Shape, J. Therm. Spray Technol., 2007, 16(5-6), p 634-642

    Article  Google Scholar 

  30. Y. Cormier, P. Dupuis, B. Jodoin, and A. Corbeil, Pyramidal Fin Arrays Performance Using Streamwise Anisotropic Materials by Cold Spray Additive Manufacturing, J. Therm. Spray Technol., 2001, 25(1-2), p 170-182

    Article  CAS  Google Scholar 

  31. O.C. Ozdemir, C.A. Widener, M.J. Carter, and K.W. Johnson, Predicting the Effects of Powder Feeding Rates on Particle Impact Conditions and Cold Spray Deposited Coatings, J. Therm. Spray Technol., 2017, 26(7), p 1598-1615

    Article  CAS  Google Scholar 

  32. K. Taylor, B. Jodoin, and J. Karov, Particle Loading Effect in Cold Spray, J. Therm. Spray Technol., 2005, 15(2), p 273-279

    Article  CAS  Google Scholar 

  33. O.C. Ozdemir, C.A. Widener, D. Helfritch, and F. Delfanian, Estimating the Effect of Helium and Nitrogen Mixing on Deposition Efficiency in Cold Spray, J. Therm. Spray Technol., 2016, 25(4), p 660-671

    Article  Google Scholar 

  34. M. Chandra, Y. Wan, A.V. Hariharan, and J.A. Talbott, Making and Connecting Bus Bars on Solar Cells, U.S.P.a.T. Office Ed., 2003

  35. M. Masoomi, S.M. Thompson, and N. Shamsaei, Laser Powder Bed Fusion of Ti-6Al-4V parts: Thermal Modeling and Mechanical Implications, Int. J. Mach. Tools Manuf., 2017, 118-119, p 73-90

    Article  Google Scholar 

  36. M.F. Zah and S. Lutzmann, Modelling and Simulation of Electron Beam Melting, Prod. Eng. Res. Dev., 2010, 4, p 15-23

    Article  Google Scholar 

  37. S. Shrestha and K. Chou, A Build Surface Study of Powder-Bed Electron Beam Additive Manufacturing by 3D Thermo-Fluid Simulation and White-Light Interferometry, Int. J. Mach. Tools Manuf., 2017, 121, p 27-49

    Article  Google Scholar 

  38. M. Elhoriny, M. Wenzelburger, A. Killinger, and R. Gadow, Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings, J. Therm. Spray Technol., 2017, 26, p 735-744

    Article  CAS  Google Scholar 

  39. H. Martin, Heat and Mass Transfer Between Impinging Gas Jets and Solid Surfaces, Adv. Heat Transf., 1977, 13, p 1-60

    Article  CAS  Google Scholar 

  40. M. Modak, K. Garg, and S.K. Sahu, Stagnation Region Heat Transfer of Axisymmetric Impinging Jets on Solid Surfaces, Chem. Eng. Technol., 2015, 38(12), p 2127-2136

    Article  CAS  Google Scholar 

  41. Q. Chen, A. Alizadeh, W. Xie, X. Wang, V.J. Champagne, A. Gouldstone, J.-H. Lee, and S. Muftu, High-Strain-Rate Material Behavior and Adiabatic Material Instability in Impact of Micron Scale Al-6061 Particles, J. Therm. Spray Technol., 2018, 27, p 641-653

    Article  CAS  Google Scholar 

  42. H. Schlichting, Boundary Layer Theory, 7th ed., McGraw-Hill Book Company Inc, New York, 1987

    Google Scholar 

  43. R.B. Bird, W.E. Stewart, and E.N. Lightfoot, Transport Phenomena, 2nd ed., Wiley, New York, 2002

    Google Scholar 

  44. A. Bejan, Heat Transfer, Wiley, New York, 1993

    Google Scholar 

  45. R.J. Goldstein, A.I. Behbahani, and K.K. Heppelmann, Streamwise Distribution of the Recovery Factor and the Local Heat Transfer Coefficient to an Impinging Circular Air Jet, Int. J. Heat Mass Transf., 1986, 29(8), p 1227-1235

    Article  CAS  Google Scholar 

  46. J.N.B. Livingood and P. Hrycak, Impingement Heat Transfer from Turbulent Air Jets: A Literature Survey, U.S.N.A.a.S. Administration Ed., U.S. National Aeronautics and Space Administration, 1973

  47. N. Zuckerman and N. Lior, Jet Impingement: Physics, Correlations, and Numerical Modeling, Adv. Heat Transf., 2006, 39, p 565-631

    Article  CAS  Google Scholar 

  48. Spotlight on Turbulence: STAR-CCM + v11.06, Siemens PLM Software, 2016

  49. STAR-CCM + Release Notes v11.06, Siemens PLM Software, 2016

  50. J.D.J. Anderson, Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill Inc., New York, 1995

    Google Scholar 

  51. F.R. Menter, Review of the Shear Stress Transport Turbulence Model Experience from an Industrial Perspective, Int. J. Comput. Fluid Dyn., 2009, 23(4), p 305-316

    Article  Google Scholar 

  52. J. Pattison, S. Celotto, A. Khan, and W. O’Neill, Standoff Distance and Bow Shock Phenomena in the Cold Spray Process, Surf. Coat. Technol., 2007, 202, p 1443-1454

    Article  CAS  Google Scholar 

  53. Q. Chen, A. Alizadeh-Dehkharghani, A. Gouldstone, and S. Muftu, High Strain Rate Material Behavior and Thermal Energy Generation in Impact of Micron-Scale Al-6061 Particles, Northeastern University, 2018 (Unpublished)

Download references

Acknowledgments

This work was sponsored in part by the US Army Research Laboratories under the Grant No. W911NF-15-2-0026. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan C. Ozdemir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, O.C., Chen, Q., Muftu, S. et al. Modeling the Continuous Heat Generation in the Cold Spray Coating Process. J Therm Spray Tech 28, 108–123 (2019). https://doi.org/10.1007/s11666-018-0794-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0794-z

Keywords

Navigation