Skip to main content
Log in

Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

The coating buildup process of Al2O3/TiO2 ceramic powder deposited on stainless-steel substrate by atmospheric plasma spraying has been simulated by creating thermomechanical finite element models that utilize element death and birth techniques in ANSYS commercial software and self-developed codes. The simulation process starts with side-by-side deposition of coarse subparts of the ceramic layer until the entire coating is created. Simultaneously, the heat flow into the material, thermal deformation, and initial quenching stress are computed. The aim is to be able to predict—for the considered spray powder and substrate material—the development of residual stresses and to assess the risk of coating failure. The model allows the prediction of the heat flow, temperature profile, and residual stress development over time and position in the coating and substrate. The proposed models were successfully run and the results compared with actual residual stresses measured by the hole drilling method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F.-W. Bach, A. Laarmann, T. Wenz, and C.B. Nakhosteen, Modern Surface Technology, Wiley, London, 2006

    Book  Google Scholar 

  2. J.R. Davis & Associates, ASM International, and Thermal Spray Society Training Committee, Handbook of Thermal Spray Technology, ASM International, New York, 2004

    Google Scholar 

  3. S. Hao, C.-J. Li, and G.-J. Yang, Influence of Deposition Temperature on the Microstructures and Properties of Plasma-Sprayed Al2O3 Coatings, J. Therm. Spray Technol., 2011, 20(1-2), p 160-169

    Article  Google Scholar 

  4. R.B. Heimann, Plasma-Spray Coating: Principles and Applications, VCH, Tokyo, 1996

    Book  Google Scholar 

  5. E. Lugscheider and K. Seemann, Prognose von Schichteigenschaften mittels neuronaler Netze, Neue Materialien und Verfahren in der Beschichtungstechnik, Univ.-Prof. Dr.-lng. habil. B.Wielage, Ed., 30 September bis 1 Oktober 2004

  6. A. Behera and S.C. Mishra, Prediction and Analysis of Deposition Efficiency of Plasma Spray Coating Using Artificial Intelligence Method, OJCM, 2012, 02(02), p 54-60

    Article  Google Scholar 

  7. M. Pasandideh-Fard, S. Chandra, and J. Mostaghimi, A Three-Dimensional Model of Droplet Impact and Solidification, Int. J. Heat Mass Transf., 2002, 45(11), p 2229-2242

    Article  Google Scholar 

  8. S. Kamnis, S. Gu, T.J. Lu, and C. Chen, Numerical Modelling of Sequential Droplet Impingements, J. Phys. D: Appl. Phys., 2008, 41(16), p 165303

    Article  Google Scholar 

  9. Jens Prehm, Coupled Coating Formation Simulation in Thermal Spray Processes Using CFD and FEM, CFD Lett., 2011, 3(2), p 2011

    Google Scholar 

  10. J. Zimmerman, Z. Lindemann, D. Golański, and W. Włosiński, Modeling Residual Stresses Generated in Ti Coatings Thermally Sprayed on Al2O3 Substrates, Bull. Pol. Acad. Sci. Tech. Sci., 2013, 61(2), p 515–525. doi:10.2478/bpasts-2013-0051

    Google Scholar 

  11. X.C. Zhang, B.S. Xu, H.D. Wang, and Y.X. Wu, Modeling of the Residual Stresses in Plasma-Spraying Functionally Graded ZrO2/NiCoCrAlY Coatings Using Finite Element Method, Mater. Des., 2006, 27(4), p 308-315

    Article  Google Scholar 

  12. S. Guessasma, G. Montavon, and C. Coddet. On the Neural Network Concept to Describe the Thermal Spray Deposition Process: An Introduction. Proc. of Therm. Spray 2002: Int. Therm. Spray Conf. (DVS-ASM), ASM International, 2002, p 435–439

  13. R. Ghafouri-Azar, J. Mostaghimi, S. Chandra, and M. Charmchi, A Stochastic Model to Simulate the Formation of a Thermal Spray Coating, J. Therm. Spray Technol., 2003, 12(1), p 53-69

    Article  Google Scholar 

  14. L. Wu, J. Zhu, and H. Xie, Numerical and Experimental Investigation of Residual Stress in Thermal Barrier Coatings During APS Process, J. Therm. Spray Technol., 2014, 23(4), p 653-665

    Article  Google Scholar 

  15. B.S. Yilbas and A. Arif, Residual Stress Analysis For HVOF Diamalloy 1005 Coating on Ti-6Al-4V Alloy, Surf. Coat. Technol., 2007, 202(3), p 559-568

    Article  Google Scholar 

  16. P. Bansal, P. Shipway, and S. Leen, Residual Stresses in High-Velocity Oxy-Fuel Thermally Sprayed Coatings—Modelling the Effect of Particle Velocity and Temperature During the Spraying Process, Acta Mater., 2007, 55(15), p 5089-5101

    Article  Google Scholar 

  17. D.W. Seo and E.G. Na, Finite Element Analysis of Residual Stress in NiCrAlY/Yttria-Stabilized Zirconia Coatings By Nanoscale Multi-Layered Deposition, KEM, 2004, 270-273, p 58-63

    Article  Google Scholar 

  18. M. Ranjbar-Far, J. Absi, S. Shahidi, and G. Mariaux, Impact of the Non-Homogenous Temperature Distribution and the Coatings Process Modeling on the Thermal Barrier Coatings System, Mater. Des., 2011, 32(2), p 728-735

    Article  Google Scholar 

  19. J. Stokes and L. Looney, FEA of Residual Stress During HVOF Thermal Spraying, J. Mater. Eng. Perform., 2009, 18(1), p 21-25

    Article  Google Scholar 

  20. P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(1-2), p 78-86

    Article  Google Scholar 

  21. T. Valente, C. Bartuli, M. Sebastiani, and F. Casadei, Finite Element Analysis of Residual Stress in Plasma-Sprayed Ceramic Coatings, Proc. Inst. Mech. Eng. Part L: J. Mater. Des. Appl., 2004, 218(4), p 321-330

    Google Scholar 

  22. M. Wenzelburger, Modeling of Thermally Sprayed Coatings on Light Metal Substrates—Layer Growth and Residual Stress Formation, Surf. Coat. Technol., 2004, 180-181, p 429-435

    Article  Google Scholar 

  23. Z. Gan, H.W. Ng, and A. Devasenapathi, Deposition-Induced Residual Stresses in Plasma-Sprayed Coatings, Surf. Coat. Technol., 2004, 187(2-3), p 307-319

    Article  Google Scholar 

  24. H.W. Ng and Z. Gan, A Finite Element Analysis Technique For Predicting As-Sprayed Residual Stresses Generated By the Plasma Spray Coating Process, Finite Elem. Anal. Des., 2005, 41(13), p 1235-1254

    Article  Google Scholar 

  25. H. Samadi and T.W. Coyle, Modeling the Build-Up of Internal Stresses in Multilayer Thick Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(5-6), p 996-1003

    Article  Google Scholar 

  26. L. Wang, Y. Wang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Finite Element Simulation of Residual Stress of Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings Using Birth and Death Element Technique, Comput. Mater. Sci., 2012, 53(1), p 117-127

    Article  Google Scholar 

  27. L. Wang, Y. Wang, W.Q. Zhang, X.G. Sun, J.Q. He, Z.Y. Pan, and C.H. Wang, Finite Element Simulation of Stress Distribution and Development in 8Ysz and Double-Ceramic-Layer La2Zr2O7/8YSZ Thermal Barrier Coatings During Thermal Shock, Appl. Surf. Sci., 2012, 258(8), p 3540-3551

    Article  Google Scholar 

  28. S. Widjaja, A.M. Limarga, and T.H. Yip, Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating, Thin Solid Films, 2003, 434(1-2), p 216-227

    Article  Google Scholar 

  29. F. Hugot, J. Patru, P. Fauchais, and L. Bianchi, Modeling of a Substrate Thermomechanical Behavior During Plasma Spraying, J. Mater. Process. Technol., 2007, 190(1-3), p 317-323

    Article  Google Scholar 

  30. R. Gadow, M.J. Riegert-Escribano, and M. Buchmann, Residual Stress Analysis in Thermally Sprayed Layer Composites, Using the Hole Milling and Drilling Method, J. Therm. Spray Technol., 2005, 14(1), p 100-108

    Article  Google Scholar 

  31. P. Fauchais, Understanding Plasma Spraying, J. Phys. D: Appl. Phys., 2004, 37(9), p R86-R108

    Article  Google Scholar 

  32. Ansys Inc., Ansys Documentation, Version 12, 2009.

  33. D. Stamenković and I. Vasović, Finite Element Analysis of Residual Stress in Butt Welding Two Similar Plates, Sci. Tech. Rev., 2009, 59(1), p 57-60

    Google Scholar 

  34. K. Shinoda, H. Murakami, S. Kuroda, K. Takehara, and S. Oki, In Situ Visualization of Impacting Phenomena of Plasma-Sprayed Zirconia: From Single Splat to Coating Formation, J. Therm. Spray Technol., 2008, 17(5-6), p 623-630

    Article  Google Scholar 

  35. A. Candel and R. Gadow, Optimized Multiaxis Robot Kinematic for HVOF Spray Coatings on Complex Shaped Substrates, Surf. Coat. Technol., 2006, 201(5), p 2065-2071

    Article  Google Scholar 

  36. E28 Committee, Test Method for Determining Residual Stresses By the Hole-Drilling Strain-Gage Method, E28 Committee, West Conshohocken, PA.

  37. R. Gadow, Advanced Ceramics and Composites, Expert, Rennes, 2000

    Google Scholar 

  38. D. Fang, S. Deng, H. Liao, and C. Coddet, Automatic Generation of Robot Trajectory For Free-Form Surfaces in Thermal Spraying, Proc. of the Int. Therm. Spray Conf. (DVS-ASM), 1 September, 2011, p 1110-1114.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Elhoriny.

Additional information

This article is an invited paper selected from presentations at the 2015 International Thermal Spray Conference, held May 11-14, 2015, in Long Beach, CA, USA, and has been expanded from the original presentation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elhoriny, M., Wenzelburger, M., Killinger, A. et al. Finite Element Simulation of Residual Stress Development in Thermally Sprayed Coatings. J Therm Spray Tech 26, 735–744 (2017). https://doi.org/10.1007/s11666-017-0538-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-017-0538-5

Keywords

Navigation