Skip to main content
Log in

Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings

  • Peer Reviewed
  • Published:
Journal of Thermal Spray Technology Aims and scope Submit manuscript

Abstract

In the atmospheric plasma spray (APS) process, micro-sized ceramic powder is injected into a thermal plasma where it is rapidly heated and propelled toward the substrate. The coating formation is characterized by the subsequent impingement of a large number of more or less molten particles forming the so-called splats and eventually the coating. In this study, a systematic investigation on the influence of selected spray parameters on the coating microstructure and the coating properties was conducted. The investigation thereby comprised the coating porosity, the elastic modulus, and the residual stress evolution within the coating. The melting status of the particles at the impingement on the substrate in combination with the substrate surface condition is crucial for the coating formation. Single splats were collected on mirror-polished substrates for selected spray conditions and evaluated by identifying different types of splats (ideal, distorted, weakly bonded, and partially molten) and their relative fractions. In a previous study, these splat types were evaluated in terms of their effect on the above-mentioned coating properties. The particle melting status, which serves as a measure for the particle spreading behavior, was determined by in-flight particle temperature measurements and correlated to the coating properties. It was found that the gun power and the spray distance have a strong effect on the investigated coating properties, whereas the feed rate and the cooling show minor influence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. R. Vassen, A. Stuke, and D. Stover, Recent Developments in the Field of Thermal Barrier Coatings, J. Therm. Spray Technol., 2009, 18(2), p 181-186

    Article  Google Scholar 

  2. S. Stewart and R. Ahmed, Rolling Contact Fatigue of Surface Coatings—A Review, Wear, 2002, 253(11–12), p 1132-1144

    Article  Google Scholar 

  3. R. Vassen et al., Aging of Atmospherically Plasma Sprayed Chromium Evaporation Barriers, Surf. Coat. Technol., 2016, 271, p 115-122

    Article  Google Scholar 

  4. H. Herman, Plasma-Sprayed Coatings, Sci. Am., 1988, 259(3), p 112-117

    Article  Google Scholar 

  5. S. Sampath et al., Substrate Temperature Effects on Splat Formation, Microstructure Development and Properties of Plasma Sprayed Coatings Part I: Case Study for Partially Stabilized Zirconia, Mater. Sci. Eng. A, 1999, 272(1), p 181-188

    Article  Google Scholar 

  6. M. Mutter et al., Correlation of Splat Morphologies with Porosity and Residual Stress in Plasma-Sprayed YSZ Coatings, Surf. Coat. Technol., 2017, 318, p 157-169

    Article  Google Scholar 

  7. R. Vaßen, S. Giesen, and D. Stöver, Lifetime of Plasma-Sprayed Thermal Barrier Coatings: Comparison of Numerical and Experimental Results, J. Therm. Spray Technol., 2009, 18(5–6), p 835-845

    Article  Google Scholar 

  8. A. Nusair Khan, J. Lu, and H. Liao, Effect of Residual Stresses on Air Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 2003, 168(2–3), p 291-299

    Article  Google Scholar 

  9. T.W. Clyne, Residual Stresses in Surface Coatings and Their Effect on Interfacial Debonding, Key Eng. Mater., 1995, 116, p 307-330

    Google Scholar 

  10. R.T.R. McGrann et al., The Effect of Coating Residual Stress on the Fatigue Life of Thermal Spray-Coated Steel and Aluminum, Surf. Coat. Technol., 1998, 108(1-3), p 59-64

    Article  Google Scholar 

  11. S. Kuroda, T. Fukushima, and S. Kitahara, Significance of the Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings. J. Therm. Spray Technol., 1992, 1(4), p 325-332

    Article  Google Scholar 

  12. T.W. Clyne and S.C. Gill, Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work, J. Therm. Spray Technol., 1996, 5(4), p 401-418

    Article  Google Scholar 

  13. P. Fauchais, A. Vardelle, and B. Dussoubs, Quo Vadis Thermal Spraying?, J. Therm. Spray Technol., 2001, 10(1), p 44-66

    Article  Google Scholar 

  14. A.J. Perry, J.A. Sue, and P.J. Martin, Practical Measurement of the Residual Stress in Coatings, Surf. Coat. Technol., 1996, 81(1), p 17-28

    Article  Google Scholar 

  15. W. Luo, U. Selvadurai, and W. Tillmann, Effect of Residual Stress on the Wear Resistance of Thermal Spray Coatings, J. Therm. Spray Technol., 2016, 25(1-2), p 321-330

    Article  Google Scholar 

  16. J.K.N. Murthy, D.S. Rao, and B. Venkataraman, Effect of Grinding on the Erosion Behaviour of a WC–Co–Cr Coating Deposited by HVOF and detonation Gun Spray Processes, Wear, 2001, 249(7), p 592-600

    Article  Google Scholar 

  17. S. Widjaja, A.M. Limarga, and T.H. Yip, Modeling of Residual Stresses in a Plasma-Sprayed Zirconia/Alumina Functionally Graded-Thermal Barrier Coating, Thin Solid Films, 2003, 434(1-2), p 216-227

    Article  Google Scholar 

  18. J.W. Watson and S.R. Levine, Deposition Stress Effects on the Life of Thermal Barrier Coatings on Burner Rigs, Thin Solid Films, 1984, 119(2), p 185-193

    Article  Google Scholar 

  19. S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings, Thin Solid Films, 1991, 200(1), p 49-66

    Article  Google Scholar 

  20. J. Matejicek and S. Sampath, Intrinsic Residual Stresses in Single Splats Produced by Thermal Spray Processes, Acta Mater., 2001, 49(11), p 1993-1999

    Article  Google Scholar 

  21. M. Sebastiani et al., High Resolution Residual Stress Measurement on Amorphous and Crystalline Plasma-Sprayed Single-Splats, Surf. Coat. Technol., 2012, 206(23), p 4872-4880

    Article  Google Scholar 

  22. A. Vaidya et al., An Integrated Study of Thermal Spray Process–Structure–Property Correlations: A Case Study for Plasma Sprayed Molybdenum Coatings, Mater. Sci. Eng. A, 2005, 403(1-2), p 191-204

    Article  Google Scholar 

  23. O. Kesler et al., Measurement of Residual Stress in Plasma-Sprayed Metallic, Ceramic and Composite Coatings, Mater. Sci. Eng. A, 1998, 257(2), p 215-224

    Article  Google Scholar 

  24. J. Matejicek et al., Quenching, Thermal and Residual Stress in Plasma Sprayed Deposits: NiCrAlY and YSZ Coatings, Acta Mater., 1999, 47(2), p 607-617

    Article  Google Scholar 

  25. P. Bengtsson and C. Persson, Modelled and Measured Residual Stresses in Plasma Sprayed Thermal Barrier Coatings, Surf. Coat. Technol., 1997, 92(1–2), p 78-86

    Article  Google Scholar 

  26. S. Kuroda, T. Dendo, and S. Kitahara, Quenching Stress in Plasma-Sprayed Coatings and Its Correlation with the Deposit Microstructure, J. Therm. Spray Technol., 1995, 4(1), p 75-84

    Article  Google Scholar 

  27. Y.C. Tsui and T.W. Clyne, An Analytical Model for Predicting Residual Stresses in Progressively Deposited Coatings, Thin Solid Films, 1997, 306, p 23-33

    Article  Google Scholar 

  28. M.M. Mutter, G. Mauer, R. Mücke, R. Vaßen, H.C. Back, and J. Gibmeier, Residual Stress Conditions of Coatings Applied by Means of Atmospheric Plasma Spraying, Therm. Spray Bull., 2017, 69(1), p 52-60

    Google Scholar 

  29. H.C. Back, M. Mutter, J. Gibmeier, R. Mücke, and R. Vaßen, Residual Stress Depth Distributions for Atmospheric Plasma Sprayed MnCo1.9Fe0.1O4 Spinel Layers on Crofer Steel Substrate, in Mecasens 2015. 2015: Grenoble, France; To be published in Material Science Forum

  30. C. Li, A. Ohmori, and R. McPherson, The Relationship Between Microstructure and Young’s Modulus of Thermally Sprayed Ceramic Coatings, J. Mater. Sci., 1997, 32(4), p 997-1004

    Article  Google Scholar 

  31. S.-H. Leigh and C.C. Berndt, Modelling of Elastic Constants of Plasma Spray Deposits with Ellipsoid-Shaped Voids, Acta Mater., 1999, 47(5), p 1575-1586

    Article  Google Scholar 

  32. R. McPherson and B.V. Shafer, Interlamellar Contact Within Plasma-Sprayed Coatings, Thin Solid Films, 1982, 97(3), p 201-204

    Article  Google Scholar 

  33. M. Ahrens et al., Sintering and Creep Processes in Plasma-Sprayed Thermal Barrier Coatings, J. Therm. Spray Technol., 2004, 13(3), p 432-442

    Article  Google Scholar 

  34. V. Teixeira, Mechanical Integrity in PVD Coatings Due to the Presence of Residual Stresses, Thin Solid Films, 2001, 392(2), p 276-281

    Article  Google Scholar 

  35. E. Bakan et al., Porosity-Property Relationships of Plasma-Sprayed Gd2Zr2O7/YSZ Thermal Barrier Coatings, J. Am. Ceram. Soc., 2015, 98(8), p 2647-2654

    Article  Google Scholar 

  36. M. Friis, C. Persson, and J. Wigren, Influence of Particle In-Flight Characteristics on the Microstructure of Atmospheric Plasma Sprayed Yttria Stabilized ZrO2, Surf. Coat. Technol., 2001, 141(2-3), p 115-127

    Article  Google Scholar 

  37. G. Mauer, R. Vassen, and D. Stover, Comparison and Applications of DPV-2000 and Accuraspray-g3 Diagnostic Systems, J. Therm. Spray Technol., 2007, 16(3), p 414-424

    Article  Google Scholar 

  38. M. Mutter et al., Investigations on the Initial Stress Evolution During Atmospheric Plasma Spraying of YSZ by In Situ Curvature Measurement, J. Therm. Spray Technol., 2016, 25(4), p 672-683

    Article  Google Scholar 

  39. J.D. Schäfer, H. Näfe, and F. Aldinger, Macro- and Microstress Analysis in Sol-Gel Derived Pb(ZrxTi1−x)O3 Thin Films, J. Appl. Phys., 1999, 85(12), p 8023-8031

    Article  Google Scholar 

  40. A.M. Limarga, R. Vaßen, and D.R. Clarke, Stress Distributions in Plasma-Sprayed Thermal Barrier Coatings Under Thermal Cycling in a Temperature Gradient, J. Appl. Mech., 2011, 78(1), p 011003

    Article  Google Scholar 

  41. V. Srinivasan and S. Sampath, Estimation of Molten Content of the Spray Stream from Analysis of Experimental Particle Diagnostics, J. Therm. Spray Technol., 2010, 19(1–2), p 476-483

    Article  Google Scholar 

  42. M. Fukumoto and Y. Huang, Flattening Mechanism in Thermal Sprayed Nickel Particle Impinging on Flat Substrate Surface, J. Therm. Spray Technol., 1999, 8(3), p 427-432

    Article  Google Scholar 

  43. J.W. Adams, R. Ruh, and K.S. Mazdiyasni, Young’s Modulus, Flexural Strength, and Fracture of Yttria-Stabilized Zirconia versus Temperature, J. Am. Ceram. Soc., 1997, 80(4), p 903-908

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the German Research Foundation (DFG) for funding this Project (VA163/6-1). Furthermore, we gratefully acknowledge the assistance of Karl-Heinz Rauwald for the experimental support, and Mark Kappertz for his help with metallographic sample preparations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Mutter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mutter, M., Mauer, G., Mücke, R. et al. Systematic Investigation on the Influence of Spray Parameters on the Mechanical Properties of Atmospheric Plasma-Sprayed YSZ Coatings. J Therm Spray Tech 27, 566–580 (2018). https://doi.org/10.1007/s11666-018-0697-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11666-018-0697-z

Keywords

Navigation