Skip to main content
Log in

Preparation and Thermoelectric Properties of Famatinite Cu3SbS4

  • Topical Collection: International Conference on Thermoelectrics 2019
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Famatinite Cu3SbS4 is considered to be a promising p-type thermoelectric material that consists of earth-abundant and nontoxic elements. In this study, this material was prepared by using mechanical alloying (MA) as a solid-state route and was consolidated using hot pressing (HP). The effects of MA–HP conditions on the phase synthesis (transformation) and thermoelectric properties were examined. Thermogravimetric and differential scanning calorimetric analyses confirmed that severe mass loss and endothermic reactions occurred at temperatures above approximately 750 K. This was possibly due to the melting of famatinite and the volatilization of the constituent elements. All the specimens exhibited p-type conduction and nondegenerate semiconductor characteristics. It was determined that the electrical and thermal conductivities decreased with an increase in the HP temperature, while the Seebeck coefficient increased. The thermal conductivity was lower than 0.74 Wm−1 K−1 at 623 K, and there was a small contribution of the electronic thermal conductivity to the thermal conductivity due to the intrinsically low electrical conductivity. The dimensionless figure of merit increased with increasing temperature, and the highest value was 0.14 at 623 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.J. Snyder and E.S. Toberer, Nat. Mater. 7, 105 (2008).

    Article  CAS  Google Scholar 

  2. A. Suzumura, M. Watanabe, N. Nagasako, and R. Asahi, J. Electron. Mater. 43, 2356 (2014).

    Article  CAS  Google Scholar 

  3. K. Chen, C. Di Paola, B. Du, R. Zhang, S. Laricchia, N. Bonini, C. Weber, I. Abrahams, H. Yan, and M. Reece, J. Mater. Chem. C 6, 8546 (2018).

    Article  CAS  Google Scholar 

  4. R. Chetty, A. Bali, and R.C. Mallik, J. Mater. Chem. C 3, 12364 (2015).

    Article  CAS  Google Scholar 

  5. S.Y. Kim, S.G. Kwak, J.H. Pi, G.E. Lee, and I.H. Kim, J. Electron. Mater. 48, 1857 (2019).

    Article  CAS  Google Scholar 

  6. B. Du, R. Zhang, M. Liu, K. Chen, H. Zhang, and M.J. Reece, J. Mater. Chem. C 7, 394 (2019).

    Article  CAS  Google Scholar 

  7. V.K. Gudelli, V. Kanchana, G. Vaitheeswaran, A. Svane, and N.E. Christensen, J. Appl. Phys. 114, 223707 (2013).

    Article  Google Scholar 

  8. B. Du, R. Zhang, K. Chen, A. Mahajan, and M.J. Reece, J. Mater. Chem. A 5, 3249 (2017).

    Article  CAS  Google Scholar 

  9. K. Chen, Synthesis and Thermoelectric Properties of Cu-Sb-S Compounds, Ph.D. Thesis (UK: Queen Mary University of London, 2016).

  10. J. Zhang, R. Liu, N. Cheng, Y. Zhang, J. Yang, C. Uher, X. Shi, L. Chen, and W. Zhang, Adv. Mater. 26, 3848 (2014).

    Article  CAS  Google Scholar 

  11. K. Chen, B. Du, N. Bonini, C. Weber, H. Yan, and M.J. Reece, J. Phys. Chem. C 120, 27135 (2016).

    Article  CAS  Google Scholar 

  12. M. Fleischer and U.S. Geol, Surv. Circ. 285, 7 (1953).

    Google Scholar 

  13. E.J. Skoug, J.D. Cain, D.T. Morelli, M. Kirkham, P. Majsztrik, and E. Lara-Curzio, J. Appl. Phys. 110, 1 (2011).

    Article  Google Scholar 

  14. K. Suekuni, K. Tsuruta, T. Ariga, and M. Koyano, Appl. Phys. Exp. 5, 2 (2012).

    Article  Google Scholar 

  15. X. Lu, D.T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Zhou, and C. Uher, Adv. Energy Mater. 3, 342 (2013).

    Article  CAS  Google Scholar 

  16. B.A. Cook, B.J. Beaudry, J.L. Harringa, and W.J. Barnett, Proceedings of 9th International Conference Thermoelectrics, Pasadena (1990), edited by C.B. Vining, p. 234.

  17. A. Yanagitani, S. Nishikawa, Y. Tanaka, Y. Kawai, S. Hayashimoto, N. Itoh, and T. Kitaoka, Proceedings of 12th International Conference Thermoelectrics, Yokohama (1993), edited by K. Matsuura, p. 277.

  18. S. Wojciechowski, J. Mater. Process. Technol. 106, 230 (2000).

    Article  Google Scholar 

  19. B.J. Skinner, F.D. Luce, and E. Makovicky, Econ. Geol. 67, 924 (1972).

    Article  CAS  Google Scholar 

  20. J.H. Wernick and K.E. Benson, J. Phys. Chem. Solids 3, 157 (1957).

    Article  CAS  Google Scholar 

  21. O. Madelung, Semiconductors: Data Handbook, 3rd ed. (Berlin: Springer, 2004).

    Book  Google Scholar 

  22. T.R. Wei, Y. Qin, T. Deng, Q. Song, B. Jiang, R. Liu, P. Qiu, X. Shi, and L. Chen, Sci. China Mater. 62, 8 (2019).

    Article  CAS  Google Scholar 

  23. Y. Goto, Y. Sakai, Y. Kamihara, and M. Matoba, J. Phys. Soc. Jpn. 84, 044706 (2015).

    Article  Google Scholar 

  24. H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, and G.J. Snyder, APL Mater. 3, 041506 (2015).

    Article  Google Scholar 

  25. C. Dames and G. Chen, Handbook of Thermoelectrics, ed. D.M. Rowe (Boca Raton: CRC Press, 1995),

    Google Scholar 

  26. M.G. Holland, Phys. Rev. 132, 2461 (1963).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Industrial Core Technology Development Program funded by the Ministry of Trade, Industry and Energy (grant no. 10083640), and by the Basic Science Research Capacity Enhancement Project (National Research Facilities and Equipment Center) through the Korea Basic Science Institute funded by the Ministry of Education (grant no. 2019R1A6C1010047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Il-Ho Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, GE., Pi, JH. & Kim, IH. Preparation and Thermoelectric Properties of Famatinite Cu3SbS4. J. Electron. Mater. 49, 2781–2788 (2020). https://doi.org/10.1007/s11664-019-07765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07765-8

Keywords

Navigation