Skip to main content
Log in

Phase evolution and thermoelectric performance of Cu2SnS3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu2SnS3 (CTS), as a potential thermoelectric (TE) material, the electrical and thermal transport properties are heavily determined by its original phase structure and the following phase evolution upon heating. Unlike previous studies that induced CTS phase transition by doping, this study used mechanical alloying powder as the precursor and successfully prepared phase-pure cubic (c-) and monoclinic (m-) CTS samples, as well as two-phase mixed samples with different percentage composition of c-CTS and m-CTS, by simply adjusting the hot pressing temperature. Firstly, phase structures of hot-pressed specimens were determined and confirmed by XRD refinement, SEM, TEM, and Raman spectroscopy. Secondly, thermodynamic property was analysis by DSC analysis, and phase evolution was detailed by analyzing specimens quenched at various temperatures. Then, the electrical and thermal transport properties were measured up to 500 °C, and were correlated with phase evolution analyzed above. Benefiting from cationic disorder, a maximum zT of 0.42 at 500 °C was achieved in c-CTS samples hot-pressed at 575 °C. The phase evolution of CTS was comprehensively investigated by using high-quality samples. The results indicate that phase transition is the potential mechanism for the doping effect in most studies, providing some guidance for improving the performance of environmentally friendly TE sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data that support the findings of this study are included within the article.

References

  1. C. Candolfi, S.E. Oualid, D. Ibrahim, S. Misra, O.E. Hamouli, A. Léon, A. Dauscher, P. Masschelein, P. Gall, P. Gougeon, C. Semprimoschnig, B. Lenoir, CEAS Space J. 13, 325–340 (2021)

    Article  Google Scholar 

  2. S. Wiriyasart, C. Hommalee, R. Prurapark, A. Srichat, P. Naphon, Phase II, Case Stud. Ther. Eng. 15, 100520 (2019).

    Google Scholar 

  3. A. Çağlar, Appl. Ther. Eng. 149, 822–828 (2019).

    Article  Google Scholar 

  4. C. Zhu, Q. Chen, H. Ming, X. Qin, Y. Yang, J. Zhang, D. Peng, T. Chen, D. Li, Y. Kawazoe, ACS Appl. Mater. Interf. 13, 25092–25101 (2021).

    Article  CAS  Google Scholar 

  5. K. Chen, C. Di Paola, B.L. Du, R.Z. Zhang, S. Laricchia, N. Bonini, C. Weber, I. Abrahams, H.X. Yan, M. Reece, J. Mater. Chem. C. 6, 8546–8552 (2018).

    Article  CAS  Google Scholar 

  6. J. Wang, T. Wang, J.J. Zhang, B.G. Liu, L.J. Wang, W. Gu, B.F. Hu, J. Xu, B.L. Du, J. Solid State Chem. 310, 123014 (2022).

    Article  CAS  Google Scholar 

  7. B. Du, R. Zhang, M. Liu, K. Chen, H. Zhang, M.J. Reece, J. Mater. Chem. C 7, 394–404 (2019).

    Article  CAS  Google Scholar 

  8. Y. Shen, C. Li, R. Huang, R. Tian, Y. Ye, L. Pan, K. Koumoto, R. Zhang, C. Wan, Y. Wang, Sci. Rep. 6,32501 (2016).

    Article  CAS  Google Scholar 

  9. A.C. Lokhande, R.B.V. Chalapathy, M. He, E. Jo, M. Gang, S.A. Pawar, C.D. Lokhande, J.H. Kim, Sol. Energy Mater. Sol. Cell 153, 84–107 (2016)

    Article  CAS  Google Scholar 

  10. F. Chen, J. Zai, M. Xu, X. Qian, J. Mater. Chem. A 1, 4316 (2013)

    Article  CAS  Google Scholar 

  11. A.C. Lokhande, A.A. Yadav, J. Lee, M. He, S.J. Patil, V.C. Lokhande, C.D. Lokhande, J.H. Kim, J. Alloy. Compd. 709, 92–103 (2017)

    Article  CAS  Google Scholar 

  12. A.C. Lokhande, A. Shelke, P.T. Babar, J. Kim, D.J. Lee, I.C. Kim, C.D. Lokhandee, J.H. Kim, RCS Adv. 7, 33737–33744 (2017).

    CAS  Google Scholar 

  13. Y. Li, G. Wang, M. Akbari-Saatlu, M. Procek, H.H. Radamson, Front. Mater. 8, 611078 (2021)

    Article  Google Scholar 

  14. M. Noroozi, G. Jayakumar, K. Zahmatkesh, J. Lu, L. Hultman, M. Mensi, S. Marcinkevicius, B. Hamawandi, M.Y. Tafti, A.B. Erg¨ul, Z. Ikonic, M.S. Toprak, H.H. Radamson, ECS J. Solid State Sci. Technol. 6(9), Q114 (2017)

    Article  CAS  Google Scholar 

  15. J. De Wild, E.V.C. Robert, B.E. Adib, D. Abou-Ras, P.J. Dale, Sol. Energy Mater. Sol. Cell 157, 259–265 (2016)

    Article  Google Scholar 

  16. D.M. Berg, R. Djemour, L. Gutay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Perez-Rodriguez, Appl. Phys. Lett. 100, 192103 (2012).

    Article  Google Scholar 

  17. Y. Ben Smida, O. Oyewo, S. Ramaila, L. Mavuru, R. Marzouki, D.C. Onwudiwe, A.H. Hamzaoui, J. Inorg. Organomet. Polym. Mater. 32, 4679–4693 (2022)

    Article  CAS  Google Scholar 

  18. P. Zawadzki, L.L. Baranowski, H.W. Peng, E.S. Toberer, D.S. Ginley, W. Tumas, A. Zakutayev, S. Lany, Appl. Phys. Lett. 103, 253902 (2013).

    Article  Google Scholar 

  19. Z. Zhang, H.W. Zhao, Y.F. Wang, X.H. Hu, Y.N. Lyu, C.C. Cheng, L. Pan, C.H. Lu, J. Alloy. Compd. 780, 618–625 (2019).

    Article  CAS  Google Scholar 

  20. F. Oliva, L. Arqués, L. Acebo, M. Guc, Y. Sánchez, X. Alcobé, A. Pérez-Rodríguez, E. Saucedo, V. Izquierdo-Roca, J. Mater. Chem. A. 5, 23863–23871 (2017).

    Article  CAS  Google Scholar 

  21. A.V. Postnikov, N.B.M. Amiri, Phys. Status Solidi 210, 1332–1335 (2013)

    Article  CAS  Google Scholar 

  22. Y.-T. Zhai, S. Chen, J.-H. Yang, H.-J. Xiang, X.-G. Gong, A. Walsh, J. Kang, S.-H. Wei, Phys. Rev. B 84, 075213 (2011)

    Article  Google Scholar 

  23. L. Xi, Y.B. Zhang, X.Y. Shi, J. Yang, X. Shi, L.D. Chen, W. Zhang, J. Yang, D.J. Singh, Phys. Rev. B 86, 155201 (2012)

    Article  Google Scholar 

  24. S. Thiruvenkadam, P. Sakthi, S. Prabhakaran, S. Chakravarty, V. Ganesan, A.L. Rajesh, Phys. B 538, 8–12 (2018)

    Article  CAS  Google Scholar 

  25. E.J. Skoug, D.T. Morelli, Phys. Rev. Lett. 107, 235901 (2011).

    Article  Google Scholar 

  26. H.W. Zhao, X.X. Xu, C. Li, R.M. Tian, R.Z. Zhang, R. Huang, Y.N. Lyu, D.X. Li, X.H. Hu, L. Pan, Y.F. Wang, J. Mater. Chem. A 5, 23267–23275 (2017)

    Article  CAS  Google Scholar 

  27. K. Lohani, C. Fanciulli, P. Scardi, Materials 15, 712 (2022)

    Article  CAS  Google Scholar 

  28. X. Xu, H. Zhao, X. Hu, L. Pan, C. Chen, D. Li, Y. Wang, J. Alloy. Compd. 728, 701–708 (2017).

    Article  CAS  Google Scholar 

  29. K. Lohani, H. Nautiyal, N. Ataollahi, K. Maji, E. Guilmeau, P. Scardi, Acs Appl. Energy Mater. 4, 12604–12612 (2021).

    Article  CAS  Google Scholar 

  30. Q. Tan, W. Sun, Z.L. Li, J.F. Li, J. Alloy. Compd. 672, 558–563 (2016).

    Article  CAS  Google Scholar 

  31. Y. Zhao, Y. Gu, P. Zhang, X. Hu, Y. Wang, P. Zong, L. Pan, Y. Lyu, K. Koumoto, Sci. Technol. Adv. Mater. 22, 363–372 (2021).

    Article  CAS  Google Scholar 

  32. K. Lohani, E. Isotta, N. Ataollahi, C. Fanciulli, A. Chiappini, P. Scardi, J. Alloy. Compd. 830, 154604 (2020).

    Article  CAS  Google Scholar 

  33. Y.C. Dong, J. He, X.R. Li, W.L. Zhou, Y. Chen, L. Sun, P.X. Yang, J.H. Chu, Mater. Lett. 160, 468–471 (2015).

    Article  CAS  Google Scholar 

  34. W. Wang, H.L. Shen, J.Z. Li, Mater. Lett. 111, 5–8 (2013).

    Article  CAS  Google Scholar 

  35. P.A. Fernandes, P.M.P. Salomé, A.F. da Cunha, Phys. Status Solidi 7, 901–904 (2010)

    Article  CAS  Google Scholar 

  36. E.L. Barbedo, P.H. Gonçalves, M.S. Lamoglia, A.M.P. Pontes, B.H. Bastos Kuffner, G.F. Gomes, G. Silva, Mater. Res. 24, 0054 (2021).

    Article  Google Scholar 

  37. L.L. Baranowski, K. McLaughlin, P. Zawadzki, S. Lany, A. Norman, H. Hempel, R. Eichberger, T. Unold, E.S. Toberer, A. Zakutayev, Phys. Rev. Appl. 4, 044017 (2015).

    Article  Google Scholar 

  38. M. He, A.C. Lokhande, I.Y. Kim, U.V. Ghorpade, M.P. Suryawanshi, J.H. Kim, J. Alloy. Compd. 701, 901–908 (2017).

    Article  CAS  Google Scholar 

  39. T. Raadik, M. Grossberg, J. Krustok, M. Kauk-Kuusik, A. Crovetto, R.B. Ettlinger, O. Hansen, J. Schou, Appl. Phys. Lett. 110(26), 261105 (2017)

    Article  Google Scholar 

  40. E.A. Pogue, M. Goetter, A. Rockett, Mater. Res. Soc. Adv. 2, 3181–3186 (2017).

    CAS  Google Scholar 

  41. A. Shigemi, T. Maeda, T. Wada, Phys. Status Solidi B 252, 1230–1234 (2015)

    Article  CAS  Google Scholar 

  42. H.T.T. Nguyen, V.S. Zakhvalinskii, T.T. Pham, N.T. Dang, T.V. Vu, E.A. Pilyuk, G.V. Rodriguez, Mater. Res. Exp. 6, 055915 (2019).

    Article  CAS  Google Scholar 

  43. C. Wang, Y.D. Chen, J. Jiang, R. Zhang, Y. Niu, T. Zhou, J.F. Xia, H.Q. Tian, J. Hu, P. Yang, RSC Adv. 7, 16795–16800 (2017).

    Article  CAS  Google Scholar 

  44. Y. Li, T. Zhang, Y. Qin, T. Day, G. Jeffrey Snyder, X. Shi, L. Chen, J. Appl. Phys. 116, 203705 (2014).

    Article  Google Scholar 

  45. R. Liu, L. Xi, H. Liu, X. Shi, W. Zhang, L. Chen, Chem. Commun. 48, 3818–3820 (2012).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Science Foundation of China (Grant Nos. 51772076, 51802083), the Science Foundation of Henan Province (Grant Nos. 222300420448, 182300410248, 182300410193), and Science & Technology Projects of Henan Province (Grant Nos. 202102210247). BD also acknowledges the financial support from Marie Curie International Incoming Fellowship of the European Community Human Potential Program under Contract no. PIIFR-GA-2013-913847 (Return Phase).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by WG, SL, BH and JX. BD, JW, and BL are responsible for writing—reviewing and editing manuscript and funding acquisition.

Corresponding authors

Correspondence to Bingguo Liu or Jian Wang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Liu, B., Li, S. et al. Phase evolution and thermoelectric performance of Cu2SnS3. J Mater Sci: Mater Electron 34, 1096 (2023). https://doi.org/10.1007/s10854-023-10530-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-023-10530-7

Navigation