Skip to main content
Log in

Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of heat treatment on the microstructure and the electrochemical properties of a typical corrosion-resistant plastic mold steel in Cl-containing solution were studied in this research. Through X-ray diffraction patterns, SEM and TEM analysis, it was found that the sequence of the precipitates in the steels tempered at 573 K, 773 K, and 923 K (300 °C, 500 °C, and 650 °C) was θ-M3C carbides, nano-sized Cr-rich M23C6 carbides, and micro/submicron-sized Cr-rich M23C6 carbides, respectively. The results of the electrochemical experiments showed that the pitting potential of the as-quenched martensitic stainless steels increased with the austenitizing temperature. However, the corrosion resistance of the steels would decreased after tempering, especially when tempered at 773 K (500 °C), no passivation regime could be found in the polarization curve of the MSSs and no effective passive film could be formed on the steels in Cl-containing environments. The present results suggested that the temperature around 773 K (500 °C) should be avoided for tempering process of MSS used as plastic molds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Schneider R, Mesquita R (2011) Int. Heat Treatment Surf. Eng. 5(3):94–100

    Article  Google Scholar 

  2. C. Ernst and W. Pannes: Proceedings of the 6th Int. Tooling Conf., Karlstad, Sweden, 2002, pp. 321–37.

  3. F. Hippenstiel, V. Lubich, P. Vetter and W. Grimm: Handbook of Plastics Mould Steels, Edelstahlwerke Buderus AG, Germany, 2004, pp. 2–5.

    Google Scholar 

  4. A. Jimenez, V. Berenguer, J. Lopez and A. Sanchez: J. Appl. Polym. Sci., 1993, vol. 50 (9), pp. 1565–73.

    Article  Google Scholar 

  5. D.C. Wen: J. Mater. Sci, 2009, vol. 44 (23), pp. 6363–71.

    Article  Google Scholar 

  6. S. Zinner, H. Lenger and I. Siller: BHM Berg-und Hüttenmännische Monatshefte, 2010, vol. 155 (7), pp. 313–17.

    Article  Google Scholar 

  7. H. Hill, S. Weber, S. Siebert, S. Huth and W. Theisen: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 686–95.

    Article  Google Scholar 

  8. H. Hill, S. Huth, S. Weber and W. Theisen: Mater. Corros., 2011, vol. 62 (5), pp. 436–43.

    Article  Google Scholar 

  9. R. Schneider, J. Perko and G. Reithofer: Mater. Manuf. Processes, 2009, vol. 24 (7–8), pp. 903–08.

    Article  Google Scholar 

  10. G. Frankel: J. Electrochem. Soc., 1998, vol. 145 (6), pp. 2186–98.

    Article  Google Scholar 

  11. S. Marcelin, N. Pébère and S. Régnier: Electrochim. Acta, 2013, vol. 87, pp. 32–40.

    Article  Google Scholar 

  12. K. Sammt, J. Sammer, J. Geckle and W. Liebfahrt: 6th Int. Tooling Conf. on “The Use Of Tool Steels: Experience and Research”. Karlstad, Sweden, 2002, pp. 285–92.

  13. A.N. Isfahany, H. Saghafian and G. Borhani: J. Alloys. Compd., 2011, vol. 509 (9), pp. 3931–36.

    Article  Google Scholar 

  14. Lo KH, Shek CH, Lai JKL (2009) Mater. Sci. Eng. R 65(4):39–104.

    Article  Google Scholar 

  15. Y.-S. Choi, J.-G. Kim, Y.-S. Park and J.-Y. Park: Mater. Lett., 2007, vol. 61 (1), pp. 244–47.

    Article  Google Scholar 

  16. N.N. Rammo and O.G. Abdulah: J. Alloys. Compd., 2006, vol. 420 (1), pp. 117–20.

    Article  Google Scholar 

  17. E. Erdos: Analysis of High Temperature Materials, vol. 204, Applied Science Publishers, London, 1983, PP. 45–56.

    Google Scholar 

  18. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang and X. Liu: Electrochim. Acta, 2015, vol. 165, pp. 45–55.

    Article  Google Scholar 

  19. H. Li, S. Xia, B. Zhou and J. Peng: Mater. Charact., 2013, vol. 81, pp. 1–6.

    Article  Google Scholar 

  20. B. Tang, L. Jiang, R. Hu and Q. Li: Mater. Charact., 2013, vol. 78, pp. 144–50.

    Article  Google Scholar 

  21. S. Zangeneh, M. Ketabchi and H.F. Lopez: Mater. Lett., 2014, vol. 116, pp. 188–90.

    Article  Google Scholar 

  22. H. Hong, B. Rho and S. Nam: Mater. Sci. Eng. A, 2001, vol. 318 (1), pp. 285–92.

    Article  Google Scholar 

  23. N. Zhu, Y. He, W. Liu, L. Li, S. Huang, J. Vleugels and O. Van der Biest: J. Mater. Sci. Technol., 2011, vol. 27 (8), pp. 725–28.

    Article  Google Scholar 

  24. G. Lorang, M.D.C. Belo, A.M.P. Simoes and M.G.S. Ferreira: J. Electrochem. Soc., 1994, vol. 141 (12), pp. 3347–56.

    Article  Google Scholar 

  25. D.E. Williams, R.C. Newman, Q. Song and R.G. Kelly: Nature, 1991, vol. 350, pp. 216–19.

    Article  Google Scholar 

  26. Y. Lee, D. Lee, J. Jang and W.-S. Ryu: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3331–33.

    Article  Google Scholar 

  27. S. El-Egamy and W. Badaway: J. Appl. Electrochem., 2004, vol. 34 (11), pp. 1153–58.

    Article  Google Scholar 

  28. H. Luo, C.F. Dong, X.G. Li and K. Xiao: Electrochim. Acta, 2012, vol. 64, pp. 211–20.

    Article  Google Scholar 

  29. B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur and M. Musiani: Electrochim. Acta, 2010, vol. 55 (21), pp. 6218–27.

    Article  Google Scholar 

  30. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, Y. Shao and X.-Y. Ge: J. Appl. Electrochem., 2015, vol. 45(4), pp. 375–83.

    Article  Google Scholar 

  31. H. Berns and W. Theisen: Ferrous Materials:Steel and Cast Iron, 1st ed., Springer, Berlin, 2008, pp. 317–27.

    Google Scholar 

  32. Lo KH, Shek CH, Lai JKL (2009) Mater. Sci. Eng. R 65(4–6):39–104

    Article  Google Scholar 

  33. C. Liu, K.-F. Yao, Z. Lu and G. Gao: J. Comput. Aided Mater. Des., 2000, vol. 7, pp. 63–69.

    Article  Google Scholar 

  34. K.-F. Yao, B. Qian, W. Shi, C. Liu and Z. Liu: Acta Metallurgica Sinica, 2003, vol. 39, pp. 892–96.

    Google Scholar 

  35. H. Nakamichi, K. Sato, Y. Miyata, M. Kimura and K. Masamura: Corros. Sci, 2008, vol. 50 (2), pp. 309–15.

    Article  Google Scholar 

  36. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard and P.A. Midgley: Scripta Mater., 2011, vol. 65 (6), pp. 509–12.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Basic Science Research program of China (Ground No. 2012CB025906)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Fu Yao.

Additional information

Manuscript submitted February 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, SY., Yao, KF., Chen, YB. et al. Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel. Metall Mater Trans A 46, 6090–6102 (2015). https://doi.org/10.1007/s11661-015-3180-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3180-1

Keywords

Navigation