Skip to main content

Advertisement

Log in

Microstructure and Properties of Nitrogen-Alloyed Martensitic Stainless Steel

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The microstructure and properties of a nitrogen-alloyed martensitic stainless steel in different heat treatment conditions were investigated in the present work. Hardness, compressive strength and microstructure were evaluated in the different heat treatment conditions, viz. hardening, cryo treatment and tempering. In the hardened condition, the microstructure consists of lath martensite, retained austenite, M23C6 carbides and MX-type carbonitrides. The typical compressive yield strength (CYS) and hardness in hardened condition were 1835 MPa and 610 VHN, respectively. After cryo treatment at −80 °C and tempering (500 °C), the hardness and CYS increased to 1936 MPa and 686 VHN, respectively. The increase in CYS and hardness is attributed to the formation of fine Mo2C and Cr2N particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.K.D.H. Bhadeshia, Progress in materials science steels for bearings. Prog. Mater. Sci. 57, 268–435 (2012). doi:10.1016/j.pmatsci.2011.06.002

    Article  Google Scholar 

  2. D. Girodin, L. Manes, J.-Y. Moraux, J.-M. de Monicault, Characterisation of The XD15N high nitrogen martensitic stainless steel for aerospace bearing, aerospace. 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion” (2002)

  3. K. Clemons, C. Lorraine, G. Salgado, A. Taylor, J. Ogren, P. Umin et al., Effects of heat treatments on steels for bearing applications. J. Mater. Eng. Perform. 16, 592–596 (2007). doi:10.1007/s11665-007-9075-6

    Article  Google Scholar 

  4. N. Mitamura, Y. Murakami, Development of NSJ2 bearing steel. NSK J. Motion Control. 8, 27–34 (2000)

    Google Scholar 

  5. D.W. Hetzner, W. Van Geertruyden, Crystallography and metallography of carbides in high alloy steels. Mater. Charact. 59, 825–841 (2008). doi:10.1016/j.matchar.2007.07.005

    Article  Google Scholar 

  6. C.A. Stickels, Carbide refining heat treatments for 52100 bearing steel. Metall. Trans. 5, 865–874 (1974). doi:10.1007/BF02643140

    Article  Google Scholar 

  7. J.R. Yang, T.H. Yu, C.H. Wang, Martensitic transformations in AISI 440C stainless steel. Mater. Sci. Eng. A 438–440, 276–280 (2006). doi:10.1016/j.msea.2006.02.098

    Google Scholar 

  8. S.C. Krishna, K.T. Tharian, K.V.A. Chakravarthi, A.K. Jha, B. Pant, Heat treatment and thermo-mechanical treatment to modify carbide banding in AISI 440C steel: a case study. Metallogr. Microstruct. Anal. 5, 108–115 (2016). doi:10.1007/s13632-016-0266-0

    Article  Google Scholar 

  9. W. Trojahn, E. Streit, H.A. Chin, D. Ehlert, Progress in bearing performance of advanced nitrogen alloyed stainless steel, Cronidur 30, in Bear. Steels into 21st Century (ASTM International, 1998)

  10. S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, K.M. George, Effect of heat treatment on the microstructure and hardness of 17Cr–0.17N–0.43C–1.7Mo martensitic stainless steel. J. Mater. Eng. Perform. 24, 1656–1662 (2015). doi:10.1007/s11665-015-1431-3

    Article  Google Scholar 

  11. R. Ghosh, S. Chenna Krishna, A. Venugopal, P. Ramesh Narayanan, A.K. Jha, P. Ramkumar, et al., Corrosion and nanomechanical behaviors of 16.3Cr–0.22N–0.43C–1.73Mo martensitic stainless steel. Corros. Sci. Technol. 15, 281–289 (2016)

    Article  Google Scholar 

  12. S. Ma, S. Chu, Z. Zhang, Y. Qiu, Principle and practice of high nitrogen steel melting by blowing ammonia gas. J. Iron. Steel Res. Int. 17, 6–9 (2010). doi:10.1016/S1006-706X(10)60050-7

    Article  Google Scholar 

  13. L. Sun, J. Li, L. Zhang, S. Yang, Y. Chen, Production of nitrogen-bearing stainless steel by injecting nitrogen gas. J. Iron. Steel Res. Int. 18, 7–11 (2011). doi:10.1016/S1006-706X(11)60109-X

    Article  Google Scholar 

  14. M.A. Ragen, D.L. Anthony, R.F. Spitzer, A comparison of the mechanical and physical properties of contemporary and new alloys for aerospace bearing applications, in Bear. Steel Technol. (ASTM International, 2002)

  15. R.J. Parker, E.N. Bamberger, Effect of carbide distribution on rolling-element fatigue life of AMS 5749 (1983)

  16. P.K. Adishesha, Effect of steel making and processing parameters on carbide banding in commercially produced ASTM A-295 52100 bearing steel. ASTM Spec. Tech. Publ. 1419, 27–46 (2002)

    Google Scholar 

  17. J.D. Verhoeven, A review of microsegregation induced banding phenomena in steels. J. Mater. Eng. Perform. 9, 286–296 (2000). doi:10.1361/105994900770345935

    Article  Google Scholar 

  18. R.A. Grange, C.R. Hribal, L.F. Porter, Hardness of tempered martensite in carbon and low-alloy steels. Metall. Trans. A 8, 1775–1785 (1977). doi:10.1007/BF02646882

    Article  Google Scholar 

  19. G. Krauss, Martensite in steel: strength and structure. Mater. Sci. Eng. A 273–275, 40–57 (1999). doi:10.1016/S0921-5093(99)00288-9

    Article  Google Scholar 

  20. L.D. Barlow, M. Du Toit, Effect of austenitizing heat treatment on the microstructure and hardness of martensitic stainless steel AISI 420. J. Mater. Eng. Perform. 21, 1327–1336 (2011). doi:10.1007/s11665-011-0043-9

    Article  Google Scholar 

  21. A.N. Isfahany, H. Saghafian, G. Borhani, The effect of heat treatment on mechanical properties and corrosion behavior of AISI420 martensitic stainless steel. J. Alloys Compd. 509, 3931–3936 (2011). doi:10.1016/j.jallcom.2010.12.174

    Article  Google Scholar 

  22. K. Nakashima, M. Suzuki, Y. Futamura, T. Tsuchiyama, S. Takaki, Limit of dislocation density and dislocation strengthening in iron. Mater. Sci. Forum 503–504, 627–632 (2006). doi:10.4028/www.scientific.net/MSF.503-504.627

    Article  Google Scholar 

  23. W. Jiang, K. Zhao, D. Ye, J. Li, Z. Li, J. Su, Effect of heat treatment on reversed austenite in Cr15 super martensitic stainless steel. J. Iron. Steel Res. Int. 20, 61–65 (2013). doi:10.1016/S1006-706X(13)60099-0

    Article  Google Scholar 

  24. D. Ye, J. Li, W. Jiang, J. Su, K. Zhao, Formation of reversed austenite in high temperature tempering process and its effect on mechanical properties of Cr15 super martensitic stainless steel alloyed with copper. Steel Res. Int. 84, 395–401 (2013). doi:10.1002/srin.201200105

    Article  Google Scholar 

  25. V.G. Gavriljuk, Nitrogen in iron and steel. ISIJ Int. 36, 738–745 (1996). doi:10.2355/isijinternational.36.738

    Article  Google Scholar 

  26. G. Krauss, Deformation and fracture in martensitic carbon steels tempered at low temperatures. Metall. Mater. Trans. B 32, 205–221 (2001). doi:10.1007/s11663-001-0044-4

    Article  Google Scholar 

  27. S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, K.M. George, Microstructure and properties of 15Cr–5Ni–1Mo–1W martensitic stainless steel. Steel Res. Int. 86, 51–57 (2015). doi:10.1002/srin.201400035

    Article  Google Scholar 

  28. B. Qin, Z.Y. Wang, Q.S. Sun, Effect of tempering temperature on properties of 00Cr16Ni5Mo stainless steel. Mater. Charact. 59, 1096–1100 (2008). doi:10.1016/j.matchar.2007.08.025

    Article  Google Scholar 

  29. M. Al Dawood, I.S. El Mahallawi, M.E. Abd El Azim, M.R. El Koussy, Thermal aging of 16Cr–5Ni–1Mo stainless steel part 1—microstructural analysis. Mater. Sci. Technol. 20, 363–369 (2004). doi:10.1179/026708304225011135

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their colleagues at Material Characterization Division (VSSC) for their support in mechanical testing of the samples. The authors would like to express sincere gratitude to the Director, VSSC for his kind permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chenna Krishna.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishna, S.C., Karthick, N.K., Jha, A.K. et al. Microstructure and Properties of Nitrogen-Alloyed Martensitic Stainless Steel. Metallogr. Microstruct. Anal. 6, 425–432 (2017). https://doi.org/10.1007/s13632-017-0381-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-017-0381-6

Keywords

Navigation