Skip to main content

Advertisement

Log in

Microstructure and Micro-texture Development of Variable Frictional Heat Input Friction Stir Welded Joints of Laser Powder Bed Fusion-Made AlSi10Mg Plates

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In this study, friction stir welding (FSW) joints of additively manufactured (AM) AlSi10Mg alloy, that is, medium heat input (joint 01), high heat input (joint 02), and low heat input (joint 03), were investigated to study the effect of frictional heat input on micro-texture evolution. A preliminary optical and SEM–EDS investigation revealed a homogeneous distribution of Al-Si particles in the high- and low-heat-input welded joints with an average particle size of 1.4 and 2.4 µm, respectively. In contrast, onion rings were only formed when the material flow was just right at a medium heat input, resulting in the highest ultimate tensile strength of 237 MPa among the three joints. Furthermore, the micro-texture analysis revealed that A/Ā ({1\(\overline{1 }\)1}<110>/{1\(\overline{1 }\)1}<\(\overline{1 }\overline{1 }\)0>) simple shear micro-textures with a slight C {001} <1\(\overline{1 }\)0>  were dominant in welds with superior mechanical strength, that is, medium-heat-input weldments. In contrast, the A*1/A*2 ({11\(\overline{1 }\)} <2\(\overline{1 }\)1>/{11\(\overline{1 }\)} <112>) shear components are more prominent in low- and high-heat-input weldments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AM:

Additively manufactured

AS:

Advancing side

FSW:

Friction stir welding

HAZ:

Heat-affected zone

SZ:

Stir zone

TMAZ:

Thermomechanical affected zone

RS:

Retracting side

α :

Heat input efficiency

V :

Transverse speed of tool

q :

Net power from the shaft

μ :

Coefficient of friction

P :

Interface pressure between the tool and welding materials

N :

Tool rotation speed (RPM)

R :

Radius of the tool shoulder

F :

Normal Z-force during welding

d :

Diameter of the rotating pin

References

  1. V.S. Gadakh and K. Adepu, Heat Generation Model for Taper Cylindrical Pin Profile in FSW, J. Mater. Res. Technol., 2013, 2(4), p 370–375

    Article  Google Scholar 

  2. P.L. Threadgilll, A.J. Leonard, H.R. Shercliff, and P.J. Withers, Friction Stir Welding of Aluminium Alloys, Int. Mater. Rev., 2009, 54(2), p 49–93

    Article  Google Scholar 

  3. R.S. Mishra and Z.Y. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng. R. Rep., 2005, 50(1–2), p 1–78

    Article  Google Scholar 

  4. M. Di, S. Genna, P. Moretti, G. Salvatore, S. Venettacci, and P. Russo, Study of the Laser-Material Interaction for Innovative Hybrid Structures: Thermo-Mechanical Characterization of Polyethylene-Based Polymers, Polym. Test., 2023, 120, p 107947

    Article  Google Scholar 

  5. Y. Huang, X. Gao, Y. Zhang, and B. Ma, Laser Joining Technology of Polymer-Metal Hybrid Structures—A Review, J. Manuf. Process., 2022, 79, p 934–961

    Article  Google Scholar 

  6. G. Çam and İ. Güven, Recent Developments in Joining of Aluminum Alloys, 2017, p 1851–1866

  7. M. Mehrpouya and A. Vosooghnia, The Benefits of Additive Manufacturing for Sustainable Design and Production (2021)

  8. B.A. Praveena, N. Lokesh, A. Buradi, N. Santhosh, B.L. Praveena, and R. Vignesh, Materials Today: Proceedings A Comprehensive Review of Emerging Additive Manufacturing (3D Printing Technology ): Methods, Materials, Applications, Challenges, Trends and Future Potential, Mater. Today Proc., 2022, 52, p 1309–1313

    Article  Google Scholar 

  9. C.A. Biffi, J. Fiocchi, and A. Tuissi, Laser Weldability of AlSi10Mg Alloy Produced by Selective Laser Melting: Microstructure and Mechanical Behavior, J. Mater. Eng. Perform., 2019, 28(11), p 6714–6719. https://doi.org/10.1007/s11665-019-04402-7

    Article  CAS  Google Scholar 

  10. M. Nahmany, Y. Hadad, E. Aghion, A. Stern, and N. Frage, Microstructural Assessment and Mechanical Properties of Electron Beam Welding of AlSi10Mg Specimens Fabricated by Selective Laser Melting, J. Mater. Process. Technol., 2019, 270, p 228–240. https://doi.org/10.1016/j.jmatprotec.2019.02.025

    Article  CAS  Google Scholar 

  11. L. Cui, Z. Peng, Y. Chang, D. He, Q. Cao, X. Guo, and Y. Zeng, Porosity, Microstructure and Mechanical Property of Welded Joints Produced by Different Laser Welding Processes in Selective Laser Melting AlSi10Mg Alloys, Opt. Laser Technol., 2022, 150, p 107952. https://doi.org/10.1016/j.optlastec.2022.107952

    Article  CAS  Google Scholar 

  12. C. Zhang, Y. Bao, H. Zhu, X. Nie, W. Zhang, S. Zhang, and X. Zeng, A Comparison between Laser and TIG Welding of Selective Laser Melted AlSi10Mg, Opt. Laser Technol., 2019, 120, p 105696. https://doi.org/10.1016/j.optlastec.2019.105696

    Article  CAS  Google Scholar 

  13. K.G. Prashanth, R. Damodaram, S. Scudino, Z. Wang, K. Prasad Rao, and J. Eckert, Friction Welding of Al-12Si Parts Produced by Selective Laser Melting, Mater. Des., 2014, 57, p 632–637. https://doi.org/10.1016/j.matdes.2014.01.026

    Article  CAS  Google Scholar 

  14. D.K. Rajak, D.D. Pagar, and P.L. Menezes, Friction-Based Welding Processes: Friction Welding and Friction Stir Welding, J. Adhes. Sci. Technol., 2020 https://doi.org/10.1080/01694243.2020.1780716

    Article  Google Scholar 

  15. X.C. Liu, Y.F. Sun, T. Nagira, K. Ushioda, and H. Fujii, Strain Rate Dependent Micro-Texture Evolution in Friction Stir Welding of Copper, Materialia, 2019, 6, p 100302

    Article  CAS  Google Scholar 

  16. R.W. Fonda, K.E. Knipling, and D.J. Rowenhorst, EBSD Analysis of Friction Stir Weld Textures, JOM, 2014, 66(1), p 149–155

    Article  CAS  Google Scholar 

  17. J. Cho, W.J. Kim, and C.G. Lee, Materials Science & Engineering A Texture and Microstructure Evolution and Mechanical Properties during Friction Stir Welding of Extruded Aluminum Billets, Mater. Sci. Eng. A, 2014, 597, p 314–323. https://doi.org/10.1016/j.msea.2013.12.087

    Article  CAS  Google Scholar 

  18. S. Chen and X. Jiang, Materials Science & Engineering A Texture Evolution and Deformation Mechanism in Friction Stir Welding of 2219Al, Mater. Sci. Eng. A, 2014, 612, p 267–277. https://doi.org/10.1016/j.msea.2014.06.014

    Article  CAS  Google Scholar 

  19. X. Xu, Y. Lu, F. Zheng, and B. Chen, Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy, J. Mater. Eng. Perform., 2015, 24(11), p 4297–4306

    Article  CAS  Google Scholar 

  20. B. Wang, B.B. Lei, J.X. Zhu, Q. Feng, L. Wang, and D. Wu, EBSD Study on Microstructure and Texture of Friction Stir Welded AA5052-O and AA6061-T6 Dissimilar Joint, Mater. Des., 2015, 87, p 593–599. https://doi.org/10.1016/j.matdes.2015.08.060

    Article  CAS  Google Scholar 

  21. M. Imam, V. Racherla, K. Biswas, H. Fujii, V. Chintapenta, Y. Sun, and Y. Morisada, Microstructure-Property Relation and Evolution in Friction Stir Welding of Naturally Aged 6063 Aluminium Alloy, Int. J. Adv. Manuf. Technol., 2017, 91(5–8), p 1753–1769

    Article  Google Scholar 

  22. M. Mahdi, H. Jamshidi, and R. Jamaati, Microstructure and Texture Evolution of Friction Stir Welded Dissimilar Aluminum Alloys: AA2024 and AA6061, J. Manuf. Process., 2018, 32, p 1–10. https://doi.org/10.1016/j.jmapro.2018.01.016

    Article  Google Scholar 

  23. M. Raturi and A. Bhattacharya, Microstructure and Texture Correlation of Secondary Heating Assisted Dissimilar Friction Stir Welds of Aluminum Alloys, Mater. Sci. Eng. A, 2021, 825, p 141891. https://doi.org/10.1016/j.msea.2021.141891

    Article  CAS  Google Scholar 

  24. S.H.C. Park, Y.S. Sato, and H. Kokawa, Effect of Micro-Texture on Fracture Location in Friction Stir Weld of Mg Alloy AZ61 during Tensile Test, Scripta Mater., 2003, 49, p 161–166

    Article  CAS  Google Scholar 

  25. G. Moeini, S.V. Sajadifar, T. Wegener, C. Rössler, A. Gerber, S. Böhm, and T. Niendorf, On the Influence of Build Orientation on Properties of Friction Stir Welded Al-Si10Mg Parts Produced by Selective Laser Melting, J. Mater. Res. Technol., 2021, 12, p 1446–1460

    Article  CAS  Google Scholar 

  26. R.D. Fu, J.F. Zhang, Y.J. Li, J. Kang, H.J. Liu, and F.C. Zhang, Effect of Welding Heat Input and Post-Welding Natural Aging on Hardness of Stir Zone for Friction Stir-Welded 2024–T3 Aluminum Alloy Thin-Sheet, Mater. Sci. Eng. A, 2013, 559, p 319–324. https://doi.org/10.1016/j.msea.2012.08.105

    Article  CAS  Google Scholar 

  27. N. Takata, H. Kodaira, K. Sekizawa, A. Suzuki, and M. Kobashi, Change in Microstructure of Selectively Laser Melted AlSi10Mg Alloy with Heat Treatments, Mater. Sci. Eng. A, 2017, 704, p 218–228. https://doi.org/10.1016/j.msea.2017.08.029

    Article  CAS  Google Scholar 

  28. U. Patakham, A. Palasay, P. Wila, and R. Tongsri, MPB Characteristics and Si Morphologies on Mechanical Properties and Fracture Behavior of SLM AlSi10Mg, Mater. Sci. Eng. A, 2021, 821, p 141602

    Article  CAS  Google Scholar 

  29. B. Zhao, Q. Cai, J. Cheng, S. Yang, and F. Chen, Investigation on Recrystallization and Precipitation Behaviors of Al-4.5Cu-1.5 Mg Alloy Re Fi Ned by Ti-Supported TiC Nanoparticles, J. Alloys Compd., 2019, 800, p 392–402

    Article  CAS  Google Scholar 

  30. T. Li, J. Zheng, L. Xia, H. Shou, Y. Zhang, R. Shi, L. He, and W. Li, Tailoring Texture to Highly Strengthen AZ31 Alloy Plate in the Thickness Direction via Pre-Tension and Rolling-Annealing, Acta Metall. Sin. (English Lett.), 2023, 36(2), p 266–280

    Article  Google Scholar 

  31. M.M.Z. Ahmed, S. Ataya, M.M. El-Sayed Seleman, H.R. Ammar, and E. Ahmed, Friction Stir Welding of Similar and Dissimilar AA7075 and AA5083, J. Mater. Process. Technol., 2017, 242, p 77–91

    Article  CAS  Google Scholar 

  32. S. Chen, X. Li, X. Jiang, T. Yuan, and Y. Hu, The Effect of Microstructure on the Mechanical Properties of Friction Stir Welded 5A06 Al Alloy, Mater. Sci. Eng. A, 2018, 735, p 382–393

    Article  CAS  Google Scholar 

  33. A. Kalinenko, I. Vysotskii, S. Malopheyev, S. Mironov, and R. Kaibyshev, Relationship between Welding Conditions, Abnormal Grain Growth and Mechanical Performance in Friction-Stir Welded 6061–T6 Aluminum Alloy, Mater. Sci. Eng. A, 2021, 817, p 141409

    Article  CAS  Google Scholar 

  34. A. Heidarzadeh, R. Khajeh, R. Jabraeili, H.R. Jafarian, M. Ahmed, N. Park, and U. Lee, Overcoming the Strength-Ductility Trade-off in Additive Manufactured AlSi10Mg Plates by Friction Stir Welding at a Low Rotational Speed, J. Mater. Res. Technol., 2023, 24, p 1897–1909

    Article  CAS  Google Scholar 

  35. S. Rahimi, T.N. Konkova, I. Violatos, and T.N. Baker, Evolution of Microstructure and Crystallographic Texture During Dissimilar Friction Stir Welding of Duplex Stainless Steel to Low Carbon-Manganese Structural Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 50(2), p 664–687

    Article  CAS  Google Scholar 

  36. M. Moghaddam, A. Zarei-Hanzaki, M.H. Pishbin, A.H. Shafieizad, and V.B. Oliveira, Characterization of the Microstructure, Texture and Mechanical Properties of 7075 Aluminum Alloy in Early Stage of Severe Plastic Deformation, Mater Charact, 2016, 119, p 137–147

    Article  CAS  Google Scholar 

  37. X. Liu, Y. Sun, T. Nagira, K. Ushioda, and H. Fujii, Effect of Stacking Fault Energy on the Grain Structure Evolution of FCC Metals During Friction Stir Welding, Acta Metall. Sin. (English Lett.), 2020, 33(7), p 1001–1012

    Article  CAS  Google Scholar 

  38. H. Yan, X. Zhao, N. Jia, Y. Zheng, and T. He, Influence of Shear Banding on the Formation of Brass-Type Textures in Polycrystalline Fcc Metals with Low Stacking Fault Energy, J. Mater. Sci. Technol., 2014, 30(4), p 408–416

    Article  CAS  Google Scholar 

  39. R. Jamaati and M.R. Toroghinejad, Effect of Stacking Fault Energy on Deformation Texture Development of Nanostructured Materials Produced by the ARB Process, Mater. Sci. Eng. A, 2014, 598, p 263–276

    Article  CAS  Google Scholar 

  40. J. Li, Y. Li, C. Huang, T. Suo, and Q. Wei, On Adiabatic Shear Localization in Nanostructured Face-Centered Cubic Alloys with Different Stacking Fault Energies, Acta Mater., 2017, 141, p 163–182

    Article  CAS  Google Scholar 

  41. M.M.Z. Ahmed, B.P. Wynne, W.M. Rainforth, and P.L. Threadgill, Quantifying Crystallographic Texture in the Probe-Dominated Region of Thick-Section Friction-Stir-Welded Aluminium, Scr. Mater., 2008, 59(5), p 507–510

    Article  CAS  Google Scholar 

  42. Y. Hwang, Z. Kang, Y. Chiou, and H. Hsu, Experimental Study on Temperature Distributions within the Workpiece during Friction Stir Welding of Aluminum Alloys, Int. J. Mach. Tools Manuf, 2008, 48, p 778–787

    Article  Google Scholar 

  43. C. Zhang, G. Huang, and Q. Liu, Quantitative Analysis of Grain Structure and Texture Evolution of Dissimilar AA2024/7075 Joints Manufactured by Friction Stir Welding, Mater. Today Commun., 2021, 26, p 101920

    Article  CAS  Google Scholar 

  44. Y. Chen, L. Wang, Z. Feng, and W. Zhang, Effects of Heat Treatment on Microstructure and Mechanical Properties of SLMed Sc-Modified AlSi10Mg Alloy, Prog. Nat. Sci. Mater. Int., 2021, 31(5), p 714–721

    Article  CAS  Google Scholar 

  45. Z. Du and M.J. Tan, Joining of 3D-Printed AlSi10Mg by Friction Stir Welding, Weld. World, 2018, 62, p 675–682

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude for the support received from the Department of Mechanical Engineering (Dr. B.R. Ambedkar National Institute of Technology, Jalandhar) for the mechanical testing. The authors also express their sincere thanks to the OIM and Texture Lab, IIT Bombay, for help with EBSD testing.

Funding

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Sharma.

Ethics declarations

Conflict of interest

The authors declare no competing interests

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 36 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Minhas, N., Sharma, V. & Bhadauria, S.S. Microstructure and Micro-texture Development of Variable Frictional Heat Input Friction Stir Welded Joints of Laser Powder Bed Fusion-Made AlSi10Mg Plates. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09426-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09426-2

Keywords

Navigation