Skip to main content
Log in

Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This paper is aimed to investigate the microstructure of 7005 aluminum sheets joined by friction-stir welding as well as their mechanical properties. Specimens with ten different sets of welding parameters were studied. Tensile test and fracture analysis determined that the joint of the best quality was obtained at the rotation speed of 1000 rpm matching with the travel speed of 200 mm/min, and the travel speed has more impact on the ultimate tensile strength. Optical microscope observation was applied to this high-quality specimen and gave evidence to explaining the formation of the onion ring structure. Electron back-scattered diffraction (EBSD) technique was employed to characterize the textures and revealed the evolution of microstructures during friction stir processing. The EBSD results showed that the grains maintain their original orientations at relatively low deformation while the orientations rotate under increasing strain. Accumulated rotation will turn the textures into mixed shear components, which finally results in grain refinement and contributes to the high quality of the joint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X. Zuo and P. Ni, Effect of Ti, Sc and Zr Additions on as-Cast Microstructures of 7005 Aluminum Alloy, Adv. Sci. Lett., 2011, 4(3), p 1182–1188

    Article  Google Scholar 

  2. J. Jiang, Y. Wang, and H. Atkinson, Microstructural Coarsening of 7005 Aluminum Alloy Semisolid Billets with High Solid Fraction, Mater. Charact., 2014, 90, p 52–61

    Article  Google Scholar 

  3. C. Huang and S. Kou, Partially Melted Zone in Aluminum Welds-Liquation Mechanism and Directional Soldification, Weld. J. N. Y., 2000, 79(5), p 113-s

    Google Scholar 

  4. A.K. Jha et al., Metallurgical Analysis of Cracking in Weldment of Propellant Tank, Eng. Fail. Anal., 2003, 10(3), p 265–273

    Article  Google Scholar 

  5. N.R. Mandal, Aluminum Welding, Woodhead Publishing, Cambridge, 2001

    Google Scholar 

  6. R.S. Mishra and Z. Ma, Friction Stir Welding and Processing, Mater. Sci. Eng., 2005, 50(1), p 1–78

    Article  Google Scholar 

  7. W. Thomas, et al., International Patent Application PCT/GB92/02203 and GB Patent Application 9125978.8. UK Patent Office, London, 6, 1991.

  8. W.-B. Lee and S.-B. Jung, The Joint Properties of Copper by Friction Stir Welding, Mater. Lett., 2004, 58(6), p 1041–1046

    Article  Google Scholar 

  9. H.S. Park et al., Microstructures and Mechanical Properties of Friction Stir Welds of 60% Cu-40% Zn Copper Alloy, Mater. Sci. Eng. A, 2004, 371(1), p 160–169

    Article  Google Scholar 

  10. N. Afrin et al., Microstructure and Tensile Properties Of Friction Stir Welded AZ31B Magnesium Alloy, Mater. Sci. Eng. A, 2008, 472(1), p 179–186

    Article  Google Scholar 

  11. W. Woo et al., Texture Variation and its Influence on the Tensile Behavior of a Friction-Stir Processed Magnesium Alloy, Scr. Mater., 2006, 54(11), p 1859–1864

    Article  Google Scholar 

  12. A.J. Ramirez and M.C. Juhas, Microstructural Evolution in Ti-6Al-4V Friction Stir Welds, Materials Science Forum, Trans Tech Publications, Aedermannsdorf, 2003

    Google Scholar 

  13. Y. Zhang et al., Microstructural characteristics and mechanical properties of Ti-6Al-4V friction stir welds, Mater. Sci. Eng. A, 2008, 485(1), p 448–455

    Article  Google Scholar 

  14. R. Nandan, T. DebRoy, and H. Bhadeshia, Recent Advances in Friction-Stir Welding-Process, Weldment Structure and Properties, Prog. Mater Sci., 2008, 53(6), p 980–1023

    Article  Google Scholar 

  15. S. Benavides et al., Low-Temperature Friction-Stir Welding of 2024 Aluminum, Scr. Mater., 1999, 41(8), p 809–815

    Article  Google Scholar 

  16. M.A. Sutton et al., Microstructural Studies of Friction Stir Welds in 2024-T3 Aluminum, Mater. Sci. Eng. A, 2002, 323(1), p 160–166

    Article  Google Scholar 

  17. A. Da Silva et al., Material Flow and Mechanical Behaviour of Dissimilar AA2024-T3 and AA7075-T6 Aluminium Alloys Friction Stir Welds, Mater. Des., 2011, 32(4), p 2021–2027

    Article  Google Scholar 

  18. G. Liu et al., Microstructural Aspects of the Friction-Stir Welding of 6061-T6 Aluminum, Scr. Mater., 1997, 37(3), p 355–361

    Article  Google Scholar 

  19. Y.S. Sato, M. Urata, and H. Kokawa, Parameters Controlling Microstructure and Hardness During Friction-Stir Welding of Precipitation-Hardenable Aluminum Alloy 6063, Metall. Mater. Trans. A, 2002, 33(3), p 625–635

    Article  Google Scholar 

  20. J.-Q. Su et al., Microstructural Investigation of Friction Stir Welded 7050-T651 Aluminium, Acta Mater., 2003, 51(3), p 713–729

    Article  Google Scholar 

  21. C.B. Fuller et al., Evolution of Microstructure and Mechanical Properties in Naturally Aged 7050 and 7075 Al Friction Stir Welds, Mater. Sci. Eng. A, 2010, 527(9), p 2233–2240

    Article  Google Scholar 

  22. H.-B. Chen et al., The Investigation of Typical Welding Defects for 5456 Aluminum Alloy Friction Stir Welds, Mater. Sci. Eng. A, 2006, 433(1), p 64–69

    Article  Google Scholar 

  23. K. Krishnan, On the Formation of Onion Rings in Friction Stir Welds, Mater. Sci. Eng. A, 2002, 327(2), p 246–251

    Article  Google Scholar 

  24. P. Prangnell and C. Heason, Grain Structure Formation During Friction Stir Welding Observed by the ‘Stop Action Technique’, Acta Mater., 2005, 53(11), p 3179–3192

    Article  Google Scholar 

  25. W. Woo et al., Texture Analysis of a Friction Stir Processed 6061-T6 Aluminum Alloy Using Neutron Diffraction, Acta Mater., 2006, 54(15), p 3871–3882

    Article  Google Scholar 

  26. R. Fonda, J. Bingert, and K. Colligan, Development of Grain Structure During Friction Stir Welding, Scr. Mater., 2004, 51(3), p 243–248

    Article  Google Scholar 

  27. Y. Li, L. Murr, and J. McClure, Flow Visualization and Residual Microstructures Associated with the Friction-Stir Welding of 2024 Aluminum to 6061 Aluminum, Mater. Sci. Eng. A, 1999, 271(1), p 213–223

    Article  Google Scholar 

  28. Y.S. Sato et al., Microstructural Evolution of 6063 Aluminum During Friction-Stir Welding, Metall. Mater. Trans. A, 1999, 30(9), p 2429–2437

    Article  Google Scholar 

  29. Y. Li, L. Murr, and J. McClure, Solid-State Flow Visualization in the Friction-Stir Welding of 2024 Al to 6061 Al, Scr. Mater., 1999, 40(9), p 1041–1046

    Article  Google Scholar 

  30. D.P. Field et al., Heterogeneity of Crystallographic Texture in Friction Stir Welds of Aluminum, Metall. Mater. Trans. A, 2001, 32(11), p 2869–2877

    Article  Google Scholar 

  31. R. Fonda and J. Bingert, Microstructural Evolution in the Heat-Affected Zone of a Friction Stir Weld, Metall. Mater. Trans. A, 2004, 35(5), p 1487–1499

    Article  Google Scholar 

  32. R. Fonda and J. Bingert, Texture Variations in an Aluminum Friction Stir Weld, Scr. Mater., 2007, 57(11), p 1052–1055

    Article  Google Scholar 

  33. U. Suhuddin et al., Grain Structure and Texture Evolution During Friction Stir Welding of Thin 6016 Aluminum Alloy Sheets, Mater. Sci. Eng. A, 2010, 527(7), p 1962–1969

    Article  Google Scholar 

  34. D.N. Lee, The Evolution of Recrystallization Textures from Deformation Textures, Scr. Metall. Mater., 1995, 32(10), p 1689–1694

    Article  Google Scholar 

  35. J. Lee, T. Konno, and H. Jeong, Grain Refinement and Texture Evolution in AZ31Mg Alloys Sheet Processed by Differential Speed Rolling, Mater. Sci. Eng. B, 2009, 161(1), p 166–169

    Article  Google Scholar 

  36. Y.S. Sato et al., Microtexture in the Friction-Stir Weld of an Aluminum Alloy, Metall. Mater. Trans. A, 2001, 32(4), p 941–948

    Article  Google Scholar 

Download references

Acknowledgment

The authors gratefully acknowledge the ardent support from Jingxu Zheng (Shanghai Jiao Tong University) for polishing the English writing and providing valuable ideas of further structure adjustments in this paper. We also thank Ruichun Luo for modifying some of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Lu, Y., Zheng, F. et al. Microstructural Investigation of Friction-Stir-Welded 7005 Aluminum Alloy. J. of Materi Eng and Perform 24, 4297–4306 (2015). https://doi.org/10.1007/s11665-015-1764-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1764-y

Keywords

Navigation