Skip to main content
Log in

Joining of 3D-printed AlSi10Mg by friction stir welding

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Friction stir welding is a solid-state welding technology capable of joining metal parts without melting. The microstructure of the material evolved during the process from columnar grain along the thermal gradient in the melt pool to fine equiaxed grains. A significant decrease in microhardness in the stir zone was observed with the lowest hardness at approximately 3 mm from the weld centre. The decrease in the microhardness is mainly attributed to the dissolution of hardening precipitates in the aluminium matrix. Defects in the weld were observed due to insufficient heat input. Heat input could be increased with the increase in rotational speed of the welding tool, with some improvements in strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Rhodes CG, Mahoney MW, Bingel WH, Spurling RA, Bampton CC (1997) Effects of friction stir welding on microstructure of 7075 aluminum. Scr Mater 36(1):69–75

    Article  Google Scholar 

  2. Liu G, Murr LE, Niou CS, McClure JC, Vega FR (1997) Microstructural aspects of the friction-stir welding of 6061-T6 aluminum. Scr Mater 37(3):355–361

    Article  Google Scholar 

  3. Jata KV, Sankaran KK, Ruschau JJ (2000) Friction-stir welding effects on microstructure and fatigue of aluminum alloy 7050-T7451. Metall Mater Trans A 31(9):2181–2192

    Article  Google Scholar 

  4. Jhabvala J, Boillat E, Antignac T, Glardon R (2010) On the effect of scanning strategies in the selective laser melting process. Virtual and Physical Prototyping 5(2):99–109

    Article  Google Scholar 

  5. Su J-Q, Nelson TW, Sterling CJ (2005) Microstructure evolution during FSW/FSP of high strength aluminum alloys. Mater Sci Eng A 405(1–2):277–286

    Article  Google Scholar 

  6. Fonda RW, Knipling KE, Bingert JF (2008) Microstructural evolution ahead of the tool in aluminum friction stir welds. Scr Mater 58(5):343–348

    Article  Google Scholar 

  7. Humphreys F.J. and Hatherly M., Chapter 11 - Grain growth following recrystallization, ed. R.a.R.A.P.S. Edition). 2004, Oxford: Elsevier Ltd

  8. Mishra R.S. and Ma Z.Y., Friction stir welding and processing. Materials Science and Engineering: R: Reports, 2005. 50(1–2): p. 1-78

  9. Sato YS, Urata M, Kokawa H (2002) Parameters controlling microstructure and hardness during friction-stir welding of precipitation-hardenable aluminum alloy 6063. Metall Mater Trans A 33(3):625–635

    Article  Google Scholar 

  10. Arbegast W.J., Hot deformation of aluminum alloys III, ed. Z. Jin, A. Beaudoin, T.A. Bieler, and B. Radhakrishnan. 2003: Wiley

  11. Hales SJ, McNelley TR (1988) Microstructural evolution by continuous recrystallization in a superplastic Al-Mg alloy. Acta Metall 36(5):1229–1239

    Article  Google Scholar 

  12. Gudmundsson H, Brooks D, Wert JA (1991) Mechanisms of continuous recrystallization in an Al ☐ Zr ☐ Si alloy. Acta Metall Mater 39(1):19–35

  13. Du Z, Tan MJ, Guo JF, Wei J (2016) Aluminium-carbon nanotubes composites produced from friction stir processing and selective laser melting. Mater Werkst 47(5–6):539–548

    Article  Google Scholar 

  14. Guo J.F., Liu J., Sun C.N., Maleksaeedi S., Bi G., Tan M.J., and Wei J., Effects of nano-Al2O3 particle addition on grain structure evolution and mechanical behaviour of friction-stir-processed Al. Mater Sci Eng A, 2014. 602(0): p. 143–149

  15. Al-Fadhalah K.J., Almazrouee A.I., and Aloraier A.S., Microstructure and mechanical properties of multi-pass friction stir processed aluminum alloy 6063. Materials & Design, 2014. 53(0): p. 550–560

  16. Sato YS, Kokawa H, Enomoto M, Jogan S (1999) Microstructural evolution of 6063 aluminum during friction-stir welding. Metall Mater Trans A 30(9):2429–2437

    Article  Google Scholar 

  17. Du Z, Tan MJ, Guo JF, Bi G, Wei J (2016) Fabrication of a new Al-Al2O3-CNTs composite using friction stir processing (FSP). Mater Sci Eng A 667:125–131

    Article  Google Scholar 

  18. Takahara H, Tsujikawa M, Chung SW, Okawa Y, Higashi K, Oki S (2008) Optimization of welding condition for nonlinear friction stir welding. Mater Trans 49(6):1359–1364

    Article  Google Scholar 

  19. Kwon Y, Saito N, Shigematsu I (2002) Friction stir process as a new manufacturing technique of ultrafine grained aluminum alloy. J Mater Sci Lett 21(19):1473–1476

    Article  Google Scholar 

  20. Martin J.W., Micromechanisms in particle-hardened alloys. 1980: CUP Archive

  21. Committee A.h., Properties and selection: nonferros alloys and special-purpose materials. 1991, Materials Park, OH: ASM International

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Du.

Additional information

This article is part of the collection Welding, Additive Manufacturing and Associated NDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Tan, M.J., Chen, H. et al. Joining of 3D-printed AlSi10Mg by friction stir welding. Weld World 62, 675–682 (2018). https://doi.org/10.1007/s40194-018-0585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-018-0585-7

Keywords

Navigation