Skip to main content
Log in

Strain rate sensitivity and deformation mechanism of nano-lamellar γ-Ni/Ni5Zr eutectic at room temperature

  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The strain rate sensitivity (m) of (Ni0.92Zr0.08)100xAlx (0 ≤ x ≤ 4 at.%) eutectic with varying average lamellae thickness (λw) in the range of 39–275 nm has been investigated in the strain rate range of 8 × 10−5 and 8 × 10−3 s−1 at room temperature. The microstructure of the nano-/ultrafine eutectic composites (NECs) is comprised of alternate lamellae of fcc γ-Ni and Ni5Zr along with 20–31 vol% γ-Ni dendritic phase. The m value of all the investigated NECs lies between 0.0080 and 0.0102, whereas the activation volume (V*) has been estimated to be between 29.7b3 and 49.8b3. High-resolution transmission electron microscopy studies confirm the dislocation-mediated plastic flow including dislocation–lamellae interaction, and their pile-up at the interface, which result in the narrow variation of m for a wide range of λw due to its interlocked lamellar microstructure. A mathematical model has been developed to correlate the m with λw for the experimented NECs with wide microstructure length scale and solute content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
TABLE 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Y. Wei, A.F. Bower, and H. Gao: Enhanced strain-rate sensitivity in fcc nanocrystals due to grain-boundary diffusion and sliding. Acta Mater. 56, 1741 (2008).

    Article  CAS  Google Scholar 

  2. Q. Wei, S. Cheng, K.T. Ramesh, and E. Ma: Effect of nanocrystalline and ultrafine grain sizes on the strain rate sensitivity and activation volume: fcc versus bcc metals. Mater. Sci. Eng. A 381, 71 (2004).

    Article  CAS  Google Scholar 

  3. R.W. Armstrong: Hall–Petch description of nanopolycrystalline Cu, Ni and Al strength levels and strain rate sensitivities. Philos. Mag. 96, 3097 (2016).

    Article  CAS  Google Scholar 

  4. V. Maier, K. Durst, J. Mueller, B. Backes, H.W. Höppel, and M. Göken: Nanoindentation strain-rate jump tests for determining the local strain-rate sensitivity in nanocrystalline Ni and ultrafine-grained Al. J. Mater. Res. 26, 1421 (2011).

    Article  CAS  Google Scholar 

  5. F.D. Torre, H.V. Swygenhoven, and M. Victoria: Nanocrystalline electrodeposited Ni: Microstructure and tensile properties. Acta Mater. 50, 3957 (2002).

    Article  Google Scholar 

  6. E. Izadi and J. Rajagopalan: Texture dependent strain rate sensitivity of ultrafine-grained aluminum films. Scr. Mater. 114, 65 (2016).

    Article  CAS  Google Scholar 

  7. I. Sabirov, M.R. Barnett, Y. Estrin, and P.D. Hodgson: The effect of strain rate on the deformation mechanisms and the strain rate sensitivity of an ultra-fine-grained Al alloy. Scr. Mater. 61, 181 (2009).

    Article  CAS  Google Scholar 

  8. R. Schwaiger, B. Moser, M. Dao, N. Chollacoop, and S. Suresh: Some critical experiments on the strain-rate sensitivity of nanocrystalline nickel. Acta Mater. 51, 5159 (2003).

    Article  CAS  Google Scholar 

  9. R.W. Hayes, D. Witkin, F. Zhou, and E.J. Lavernia: Deformation and activation volumes of cryomilled ultrafine-grained aluminium. Acta Mater. 52, 4259 (2004).

    Article  CAS  Google Scholar 

  10. R. Fritz, D. Wimler, A. Leitner, V. Maier-Kiener, and D. Kiener: Dominating deformation mechanisms in ultrafine-grained chromium across length scales and temperatures. Acta Mater. 140, 176 (2017).

    Article  CAS  Google Scholar 

  11. A.D. Kammers, J. Wongsa-Ngam, T.G. Langdon, and S. Daly: The microstructure length scale of strain rate sensitivity in ultrafine-grained aluminium. J. Mater. Res. 30, 981 (2015).

    Article  CAS  Google Scholar 

  12. V. Maier, C. Schunk, M. Göken, and K. Durst: Microstructure-dependent deformation behaviour of bcc-metals–Indentation size effect and strain rate sensitivity. Philos. Mag. 95, 1766 (2015).

    Article  CAS  Google Scholar 

  13. A.M. Glezer, E.V. Kozlov, N.A. Koneva, N.A. Popova, and I.A. Kurzina: Plastic Deformation of Nanostructured Materials (CRC Press, Boca Raton, London, 2017); pp. 133–135.

    Book  Google Scholar 

  14. G.M. Cheng, W.W. Jian, W.Z. Xu, H. Yuan, P.C. Millett, and Y.T. Zhu: Grain size effect on deformation mechanisms of nanocrystalline bcc metals. Mater. Res. Lett. 1, 26 (2013).

    Article  CAS  Google Scholar 

  15. D. Jang and M. Atzmon: Grain-size dependence of plastic deformation in nanocrystalline Fe. J. Appl. Phys. 93, 9282 (2003).

    Article  CAS  Google Scholar 

  16. Q. Zhou, J. Zhao, J.Y. Xie, F. Wang, P. Huang, T.J. Lu, and K.W. Xu: Grain size dependent strain rate sensitivity in nanocrystalline body-centered cubic metal thin films. Mater. Sci. Eng. A 608, 184 (2014).

    Article  CAS  Google Scholar 

  17. Y. Wang, Y. Liu, and J.T. Wang: Investigation on activation volume and strain-rate sensitivity in ultrafine-grained tantalum. Mater. Sci. Eng. A 635, 86 (2015).

    Article  CAS  Google Scholar 

  18. D. Wu, X.L. Wang, and T.G. Nieh: Variation of strain rate sensitivity with grain size in Cr and other body-centred cubic metals. J. Phys. D Appl. Phys. 47, 175303 (2014).

    Article  CAS  Google Scholar 

  19. D. Jia, K.T. Ramesh, and E. Ma: Effects of nanocrystalline and ultrafine grain sizes on constitutive behavior and shear bands in iron. Acta Mater. 51, 3495 (2003).

    Article  CAS  Google Scholar 

  20. T.R. Malow and C.C. Koch: Mechanical properties, ductility, and grain size of nanocrystalline iron produced by mechanical attrition. Metall. Mater. Trans. A 29A, 2285 (1998).

    Article  CAS  Google Scholar 

  21. S. Nemat-Nasser, W. Guo, and M. Liu: Experimentally-based micromechanical modelling of dynamic response of molybdenum. Scr. Mater. 40, 859 (1999).

    Article  CAS  Google Scholar 

  22. G. He, J. Eckert, W. Löser, and L. Schultz: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).

    Article  CAS  Google Scholar 

  23. T. Maity, A. Singh, A. Dutta, and J. Das: Microscopic mechanism on the evolution of plasticity in nanolamellar γ-Ni/Ni5Zr eutectic composites. Mater. Sci. Eng. A 666, 72 (2016).

    Article  CAS  Google Scholar 

  24. T. Maity, B. Roy, and J. Das: Mechanism of lamellae deformation and phase rearrangement in ultrafine β-Ti/FeTi eutectic composites. Acta Mater. 97, 170 (2015).

    Article  CAS  Google Scholar 

  25. A.H.W. Ngan, J.B. Pethica, and H.P. Ng: Strain-rate sensitivity of hardness of nanocrystalline Ni75at.%Al25at.% alloy film. J. Mater. Res. 18, 382 (2003).

    Article  CAS  Google Scholar 

  26. J.T. Kim, S.H. Hong, Y.S. Kim, H.J. Park, T. Maity, N. Chawake, X.L. Bian, B. Sarac, J.M. Park, K.G. Prashanth, J.Y. Park, J. Eckert, and K.B. Kim: Cooperative deformation behavior between the shear band and boundary sliding of an Al-based nanostructure-dendrite composite. Mater. Sci. Eng. A 735, 81 (2018).

    Article  CAS  Google Scholar 

  27. J.T. Kim, S.H. Hong, J.M. Park, J. Eckert, and K.B. Kim: Microstructure and mechanical properties of hierarchical multi-phase composites based on Al-Ni-type intermetallic compounds in the Al-Ni-Cu-Si alloy system. J. Alloys Compd. 749, 205 (2018).

    Article  CAS  Google Scholar 

  28. J.T. Kim, S.H. Hong, H.J. Park, Y.S. Kim, J.Y. Suh, J.K. Lee, J.M. Park, T. Maity, J. Eckert, and K.B. Kim: Deformation mechanisms to ameliorate the mechanical properties of novel TRIP/TWIP Co-Cr-Mo-(Cu) ultrafine eutectic alloys. Sci. Rep. 7, 39959 (2017).

    Article  CAS  Google Scholar 

  29. J.T. Kim, S.W. Lee, S.H. Hong, H.J. Park, J.-Y. Park, N. Lee, Y. Seo, W.-M. Wang, J.M. Park, and K.B. Kim: Understanding the relationship between microstructure and mechanical properties of Al–Cu–Si ultrafine eutectic composites. Mater. Des. 92, 1038 (2016).

    Article  CAS  Google Scholar 

  30. A. Dutta and J. Das: Superior oxidation resistance of ultrafine Ni-Zr-(Al) eutectic composites in the temperature range of 500–900°C. J. Alloys Compd. (2020). doi: 10.1016/j.jallcom.2020.155998.

    Google Scholar 

  31. A. Neogi, L. He, and N. Abdolrahim: Atomistic simulations of shock compression of single crystal and core-shell Cu@Ni nanoporous metals. J. Appl. Phys. 126, 015901 (2019).

    Article  CAS  Google Scholar 

  32. J. Alkorta and J.G. Sevillano: Measuring the strain rate sensitivity by instrumented indentation. Application to an ultrafine grain (equal channel angular-pressed) eutectic Sn-Bi alloy. J. Mater. Res. 19, 282 (2004).

    Article  CAS  Google Scholar 

  33. H.E. Cline and D. Lee: Strengthening of lamellar vs. equiaxed Ag-Cu eutectic. Acta Metall. 18, 315 (1970).

    Article  CAS  Google Scholar 

  34. I. Shohji, T. Yoshida, T. Takahashi, and S. Hioki: Tensile properties of Sn-Ag based lead-free solders and strain rate sensitivity. Mater. Sci. Eng. A 366, 50 (2004).

    Article  CAS  Google Scholar 

  35. A.E. Geckinli and C.R. Barrett: Superplastic deformation of the Pb-Sn eutectic. J. Mater. Sci. 11, 510 (1976).

    Article  CAS  Google Scholar 

  36. K. Edalati, T. Masuda, M. Arita, M. Furui, X. Sauvage, Z. Horita, and R.Z. Valiev: Room-temperature superplasticity in an ultrafine-grained magnesium alloy. Sci. Rep. 7, 2662 (2017).

    Article  CAS  Google Scholar 

  37. H. Baker: Alloy Phase Diagram, ASM Handbook, Vol. 3 (ASM International, OH, 1992).

  38. T. Maity and J. Das: High strength Ni-Zr-(Al) nanoeutectic composites with large plasticity. Intermetallics 63, 51 (2015).

    Article  CAS  Google Scholar 

  39. A. Dutta, P.P. Jana, and J. Das: Effect of cooling rate and composition on the microstructure and mechanical properties of (Ni0.92Zr0.08)100-xAlx (0≤x≤4 at.%) ultrafine eutectic composites. J. Mater. Res. 34, 1704 (2019).

    Article  CAS  Google Scholar 

  40. J.E. Bailey and P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5, 485 (1960).

    Article  CAS  Google Scholar 

  41. S. Graça, R. Colaço, P.A. Carvalho, and R. Vilar: Determination of dislocation density from hardness measurements in metals. Mater. Lett. 62, 3812 (2008).

    Article  CAS  Google Scholar 

  42. W.D. Callister, Jr., and D.G. Rethwisch: Materials Science and Engineering: An Introduction, 2nd ed. (Wiley India Pvt. Ltd., New Delhi, India, 2014).

    Google Scholar 

  43. K. Jonnalagadda, N. Karanjgaokar, I. Chasiotis, J. Chee, and D. Peroulis: Strain rate sensitivity of nanocrystalline Au films at room temperature. Acta Mater. 58, 4674 (2010).

    Article  CAS  Google Scholar 

  44. R.Z. Valiev, E.V. Kozlov, Y.F. Ivanov, J. Lian, A.A. Nazarov, and B. Baudelet: Deformation behaviour of ultra-fine-grained copper. Acta Metall. 42, 2467 (1994).

    Article  CAS  Google Scholar 

  45. J. Lian and B. Baudelet: A modified Hall-Petch relationship for nanocrystalline materials. Nanostruct. Mater. 2, 415 (1993).

    Article  CAS  Google Scholar 

  46. C.D. Gu, J.S. Lian, Q. Jiang, and W.T. Zheng: Experimental and modelling investigations on strain rate sensitivity of an electrodeposited 20 nm grain sized Ni. J. Phys. D Appl. Phys. 40, 7440 (2007).

    Article  CAS  Google Scholar 

  47. Y. Gu, Y. Xiang, D.J. Srolovitz, and J.A. El-Awady: Self-healing of low angle grain boundaries by vacancy diffusion and dislocation climb. Scr. Mater. 155, 155 (2018).

    Article  CAS  Google Scholar 

  48. J. Du, B. Wen, R. Melnik, and Y. Kawazoe: First-principles studies on structural, mechanical, thermodynamic and electronic properties of Ni5Zr intermetallic compounds. Intermetallics 54, 110 (2014).

    Article  CAS  Google Scholar 

  49. T. Maity, K.G. Prashanth, Ö Balçi, Z. Wang, Y.D. Jia, and J. Eckert: Plastic deformation mechanisms in severely strained eutectic high entropy composites explained via strain rate sensitivity and activation volume. Compos. B Eng. 150, 7 (2018).

    Article  CAS  Google Scholar 

  50. W. Wang, Y. Ma, M. Yang, P. Jiang, F. Yuan, and X. Wu: Strain rate effect on tensile behavior for a high specific strength steel: From quasi-static to intermediate strain rates. Metals 8, 11 (2018).

    Article  CAS  Google Scholar 

  51. A.V.D. Beukel and U.F. Kocks: The strain dependence of static and dynamic strain-aging. Acta Metall. 30, 1027 (1982).

    Article  Google Scholar 

  52. A.V.D. Beukel: Theory of the effect of dynamic strain aging on mechanical properties. Phys. Status Solidi 30, 197 (1975).

    Article  Google Scholar 

  53. C.X. Huang, W.P. Hu, and Q.Y. Wang: Strain-rate sensitivity, activation volume and mobile dislocations exhaustion rate in nanocrystalline Cu-11.1 at% Al alloy with low stacking fault energy. Mater. Sci. Eng. A 611, 274 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the technical support of M. Das, S. Maity, and R. Kundu at Central Research Facility, IIT Kharagpur. The authors further acknowledge the Naval Research Board, GOI (NRB/4003/PG/357), and IIT Kharagpur SRIC (SGIRG) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, A., Das, J. Strain rate sensitivity and deformation mechanism of nano-lamellar γ-Ni/Ni5Zr eutectic at room temperature. Journal of Materials Research 35, 2777–2788 (2020). https://doi.org/10.1557/jmr.2020.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2020.188

Navigation