Skip to main content

Advertisement

Log in

Effect of Heat Treatment on Microstructure and Properties of Rolled Mg-4Y-3Nd-1.5Al Alloy

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

A Correction to this article was published on 14 May 2024

This article has been updated

Abstract

Mg-4Y-3Nd-1.5Al alloy sheets were prepared by multi-pass rolling. The effects of the heat treatment process on the microstructure and mechanical properties of the as-rolled alloy were studied. The results showed that during the solution treatment at 520 °C, with the increase of solution time, the grain size of the alloy gradually increased, and the Mg-RE phase in the microstructure gradually dissolved. After aging treatment at 200 °C, the strengthening phase in the alloy precipitated evenly, and the number of precipitated phases in the solid solution aging alloy was more than that in the direct aging alloy. Under this alloy system, the aging strengthening effect dominates. Through the exploration of the heat treatment process, the alloy sheet with the best mechanical properties was obtained at 520 °C solution for 6 h + 200 °C aging for 16 h (T6), and the elongation of 12.6% was obtained while satisfying the tensile strength of 302.3 MPa. Compared with the alloy after direct aging treatment, the elongation of the alloy after solid solution aging was greatly improved, which could be attributed to the fact that the solid solution treatment eliminated the residual stress of the alloy sheet and reduced the proportion of the hard-brittle Mg-RE phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Change history

References

  1. M.Q. Cong, Z.Q. Li, J.S. Liu, and S.H. Li, Effect of Sr on Microstructure, Tensile Properties and Wear Behavior of As-Cast Mg-6Zn-4Si alloy, Mater. Design, 2014, 53, p 430–434.

    Article  CAS  Google Scholar 

  2. B.D. Lee, H.T. Son, and J.W. Han, Microstructure and Mechanical Properties on Aging Behavior of Zn Containing Mg-2Sn-0.4Mn Alloy, Intermetallics, 2013, 32, p 214–218.

    Article  CAS  Google Scholar 

  3. W.C. Xu, X.Z. Han, and D.B. Shan, Precipitates Formed in the As-Forged Mg-Zn-RE Alloy during Ageing Process at 250 °C, Mater. Chrarct., 2013, 75, p 176–183.

    Article  CAS  Google Scholar 

  4. H. Ji, X. Peng, X.L. Zhang, W.C. Liu, G.H. Wu, L. Zhang, and W.J. Ding, Balance of Mechanical Properties of Mg-8Li-3Al-2Zn-0.5Y Alloy by Solution and Low-Temperature Aging Treatment, J. Alloys Compd., 2019, 791, p 655–664.

    Article  CAS  Google Scholar 

  5. L. Ma, R.K. Mishra, L.M. Peng, A.A. Luo, W.J. Ding, and A.K. Sachdev, Texture and Mechanical Behavior Evolution of Age-Hardenable Mg-Nd-Zn Extrusions during Aging Treatment, Mater. Sci. Eng. A, 2011, 529, p 151–155.

    Article  CAS  Google Scholar 

  6. Z.L. Ning, J.Y. Yi, M. Qian, H.C. Sun, F.Y. Cao, H.H. Liu, and J.F. Sun, Microstructure and Elevated Temperature Mechanical and Creep Properties of Mg-4Y-3Nd-0.5Zr Alloy in the Product form of a Large Structural Casting, Mater. Design, 2014, 60, p 218–225.

    Article  CAS  Google Scholar 

  7. X.B. Zheng, W.B. Du, Z.H. Wang, S.B. Li, K. Liu, and X. Du, Remarkably Enhanced Mechanical Properties of Mg-8Gd-1Er-0.5Zr Alloy on the Route of Extrusion, Rolling and Aging, Mater. Lett., 2018, 212, p 155–158.

    Article  CAS  Google Scholar 

  8. H. Yan, S.W. Xu, R.S. Chen, S. Kamado, T. Honma, and E.H. Han, Activation of 102 Twinning and Slip in High Ductile Mg-2.0Zn-0.8Gd Rolled Sheet with Non-basal Texture during Tensile Deformation at Room Temperature, J. Alloys Compd., 2013, 566, p 98–107.

    Article  CAS  Google Scholar 

  9. L. Jin, J. Don, R. Wang, and L.M. Peng, Effects of Hot Rolling Processing on Microstructures and Mechanical Properties of Mg-3%Al-1%Zn Alloy Sheet, Mater. Sci. Eng. A, 2010, 527(7–8), p 1970–1974.

    Article  Google Scholar 

  10. R. Zhu, C.J. Bian, and Y.J. Wu, Mechanical Properties and Microstructural Evolution of Variable-Plane-Rolled Mg-3Al-1Zn Alloy, J. Mater. Eng. Perform., 2017, 26(6), p 2937–2946.

    Article  CAS  Google Scholar 

  11. T. Al-Samman and G. Gottstein, Influence of Strain Path Change on the Rolling Behavior of Twin Roll Cast Magnesium Alloy, Scripta Mater., 2008, 59(7), p 760–763.

    Article  CAS  Google Scholar 

  12. Z.B. Chen, C.M. Liu, H.C. Xiao, J.K. Wang, Z.Y. Chen, S.N. Jiang, and Z.J. Su, Effect of Rolling Passes on the Microstructures and Mechanical Properties of Mg-Gd-Y-Zr Alloy Sheets, Mater. Sci. Eng. A, 2014, 618, p 232–237.

    Article  CAS  Google Scholar 

  13. B. Li, B. Teng, and E. Wang, Effects of Accumulative Rolling Reduction on the Microstructure Characteristic and Mechanical Properties of Mg-Gd-Y-Zn-Zr Sheets Processed by Hot Rolling, Mater. Sci. Eng. A, 2019, 765, 138317.

    Article  CAS  Google Scholar 

  14. J.H. Wang, P.P. Jin, X.Q. Li, F. Wei, B. Shi, X. Ding, and M.N. Zhang, Effect of Rolling with Different Amounts of Deformation on Microstructure and Mechanical Properties of the Mg-1Al-4Y Alloy, Mater. Chrarct., 2020, 161, 110149.

    Article  CAS  Google Scholar 

  15. J.P. Sun, B.J. Li, J. Yuan, X.K. Li, B.Q. Xu, Z.Q. Yang, J. Han, J.H. Jiang, G.S. Wu, and A.B. Ma, Developing a High-Performance Mg-5.7Gd-1.9Ag Wrought Alloy via Hot Rolling and Aging, Mater. Sci. Eng. A, 2021, 803, p 140707.

    Article  CAS  Google Scholar 

  16. Z.H. Yan, Y.D. Yu, Y.C. Sang, Y.M. Yao, and J.H. Qian, Processing of High Strength Mg-9Gd-3Nd-1Sn-1Zn-0.6Zr Alloy by Hot Rolling and Subsequent Aging, Mater. Express, 2020, 10(7), p 1020–1031.

    Article  CAS  Google Scholar 

  17. K. Yu, W.X. Li, R.C. Wang, B. Wang, and C. Li, Effect of T5 and T6 Tempers on a Hot-Rolled WE43 Magnesium Alloy, Mater. Trans., 2008, 49(8), p 1818–1821.

    Article  CAS  Google Scholar 

  18. Z.Y. Zhao, P.K. Bai, R.G. Guan, V. Murugadoss, H. Liu, X.J. Wang, and Z.H. Guo, Microstructural Evolution and Mechanical Strengthening Mechanism of Mg-3Sn-1Mn-1La Alloy after Heat Treatments, Mater. Sci. Eng. A, 2018, 734, p 200–209.

    Article  CAS  Google Scholar 

  19. Y. Cao, L. Wang, E.J. Guo, Y.C. Feng, S.C. Zhao, and Y.K. Fu, Effect of Al Addition on the Rolled Microstructure and Mechanical Properties of Mg-4Y-3Nd Alloys, J. Mater. Eng. Perform., 2022, 31(11), p 8699–8710.

    Article  CAS  Google Scholar 

  20. E.J. Guo, Y. Cao, L. Wang, S.C. Zhao, Y.C. Feng, and Y.K. Fu, Effect of Rolling Deformation on Microstructure and Mechanical Properties of Mg-Y-Nd-Al alloy, Mater. Sci. Tech-Lond., 2023, 32(12), p 1519–1529.

    Article  Google Scholar 

  21. Y.C. Feng, L. Wang, Y.K. Fu, S.C. Zhao, L.P. Wang, and E.J. Guo, Effect of Heat Treatment on Microstructure and Mechanical Properties of Mg-4Y-3Nd-1.5Al Alloy, Rare Matal Mat. Eng., 2021, 50(5), p 1826–1832.

    CAS  Google Scholar 

  22. D. Choudhuri, S. Meher, S. Nag, N. Dendge, J.Y. Hwang, and R. Banerjee, Evolution of a Honeycomb Network of Precipitates in a Hot-Rolled Commercial Mg-Y-Nd-Zr alloy, Philos. Mag. Lett., 2013, 93(7), p 395–404.

    Article  CAS  Google Scholar 

  23. G. Barucca, R. Ferragut, F. Fiori, D. Lussana, P. Mengucci, F. Moia, and G. Riontino, Formation and Evolution of the Hardening Precipitates in a Mg-Y-Nd Alloy, Acta Mater., 2011, 59(10), p 4151–4158.

    Article  CAS  Google Scholar 

  24. Y. Gao, H. Liu, R. Shi, N. Zhou, Z. Xu, Y.M. Zhu, J.F. Nie, and Y. Wang, Simulation Study of Precipitation in an Mg-Y-Nd Alloy, Acta Mater., 2012, 60(12), p 4819–4832.

    Article  CAS  Google Scholar 

  25. H.H. Yu, Y.C. Xin, M.Y. Wang, and Q. Liu, Hall–Petch Relationship in Mg Alloys: A Review, J. Mater. Sci. Technol., 2018, 34(2), p 248–256.

    Article  CAS  Google Scholar 

  26. B. Li, B.G. Teng, and E.D. Wang, Effects of Accumulative Rolling Reduction on the Microstructure Characteristic and Mechanical Properties of Mg-Gd-Y-Zn-Zr Sheets Processed by Hot Rolling, Mater. Sci. Eng. A, 2019, 765, 138317.

    Article  CAS  Google Scholar 

  27. X.R. Chen, Y.H. Jia, Q.C. Le, S.C. Ning, X.Q. Li, and F.X. Yu, The Interaction Between In Situ Grain Refiner and Ultrasonic Treatment and Its Influence on the Mechanical Properties of Mg-Sm-Al Magnesium Alloy, J. Mater. Res. Technol., 2020, 9(4), p 9262–9270.

    Article  CAS  Google Scholar 

  28. Q. Wu, H.G. Yan, J.H. Chen, W.J. Xia, M. Song, and B. Su, The Interactions Between Dynamic Precipitates and Dynamic Recrystallization in Mg-5Zn-1Mn Alloys during Hot Compression, Mater. Chrarct., 2020, 160, 110131.

    Article  CAS  Google Scholar 

  29. J.H. Wang, M.N. Zhang, B. Shi, L. Zhang, and P.P. Jin, Ex-Situ EBSD Investigation of the Reduced c/a Values and Work Hardening Behavior in Mg-4Li-1Al-0.5Y Alloy under Hot Compression, Mater. Sci. Eng. A, 2020, 797, p 140113.

    Article  CAS  Google Scholar 

  30. X.H. Chen, F.S. Pan, J.J. Mao, J.F. Wang, D.F. Zhang, A.T. Tang, and J. Peng, Effect of Heat Treatment on Strain Hardening of ZK60 Mg Alloy, Mater. Design, 2011, 32(3), p 1526–1530.

    Article  CAS  Google Scholar 

  31. H.M. Chen, S.B. Kang, H.S. Yu, J. Cho, H.W. Kim, and G.H. Min, Effect of Heat Treatment on Microstructure and Mechanical Properties of Twin Roll Cast and Sequential Warm Rolled ZK60 Alloy Sheets, J. Alloys Compd., 2009, 476(1–2), p 324–328.

    Article  CAS  Google Scholar 

  32. G.Q. Li, J.H. Zhang, R.Z. Wu, Y. Feng, S.J. Liu, X.J. Wang, Y.F. Jiao, Q. Yang, and J. Meng, Development of High Mechanical Properties and Moderate Thermal Conductivity Cast Mg Alloy with Multiple RE via Heat Treatment, J. Mater. Sci. Technol., 2018, 34(7), p 1076–1084.

    Article  CAS  Google Scholar 

  33. X. Liu, Z.Q. Zhang, W.Y. Hu, Q.C. Le, L. Bao, and J.Z. Cui, Effects of Extrusion Speed on the Microstructure and Mechanical Properties of Mg-9Gd-3Y-1.5Zn-0.8Zr alloy, J. Mater. Sci. Technol., 2016, 32(4), p 313–319.

    Article  CAS  Google Scholar 

  34. D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, and J. Zheng, Effects of Heat Treatments on Microstructure and Mechanical Properties of Mg-11Y-5Gd-2Zn-0.5Zr (wt.%) Alloy, J. Alloys Compd., 2011, 509(5), p 1696–1704.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from the Opening Project of the Key Laboratory of Advanced Manufacturing and Intelligent Technology (Ministry of Education), Harbin University of Science and Technology (KFKT202203), National Natural Science Foundation of China (51804090), and Natural Science Foundation of Heilongjiang Province (YQ2023E037).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Wang or Yicheng Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: The originally published version of the article contained errors in the description of Figure 10. The reference to Fig. 10 in the sentence “From Fig. 10(a) and (d), it can be observed that the rolled alloy has a high-stress level” should read “From Fig. 10(a) and (e).” In the caption, the content of Fig. 10(b), (c), (f), and (g) was identified incorrectly. The following is the correct figure caption: KAM maps of different alloys: (a) and (e) as-rolled; (b) and (f) T5; (c) and (g) as-solutionized; (d) and (h) T6

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, E., Cao, Y., Wang, L. et al. Effect of Heat Treatment on Microstructure and Properties of Rolled Mg-4Y-3Nd-1.5Al Alloy. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-024-09342-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-024-09342-5

Keywords

Navigation