Skip to main content
Log in

Superior Strain Rate Strengthening Effect and Ductility of a Ti-4.5Al-2.9V-3Fe Alloy under High Strain Rate Loading

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The mechanical response of the Ti-4.5Al-2.9V-3Fe alloy demonstrates a significant strain rate strengthening effect and strong ductility at high strain rates (3.0 × 103/s), contrary to the typical behavior of titanium and its alloys which exhibit a trade-off between these properties. Our recent studies have revealed that this unusual improvement can be attributed to a transformation in the plastic deformation mechanism, specifically from slip-dominating to twinning–slipping combination, under dynamic loading conditions compared to quasi-static loading conditions. Microstructure characterization before and after loading confirms this change in deformation mechanism. Furthermore, simulation predicts a dramatic adiabatic temperature rise in the necking region, which may contribute to strain softening effects observed experimentally. These findings provide valuable insights for manufacturing strategies and enhance our understanding of the mechanical behavior exhibited by titanium alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Q. Zhao, Q. Sun, S. Xin, Y. Chen, C. Wu, H. Wang, J. Xu, M. Wan, W. Zeng, and Y. Zhao, High-Strength Titanium Alloys for Aerospace Engineering Applications: A Review on Melting-Forging Process, Mater. Sci. Eng.: A, 2022, 845, p 143260.

    Article  CAS  Google Scholar 

  2. A. Arab, P. Chen, and Y. Guo, Effects of Microstructure on the Dynamic Properties of TA15 Titanium Alloy, Mech. Mater., 2019, 137, p 103121.

    Article  Google Scholar 

  3. C. Ran, Z. Sheng, P. Chen, W. Zhang, and Q. Chen, Effect of Microstructure on the Mechanical Properties of Ti–5Al–5Mo–5V–1Cr–1Fe Alloy, Mater. Sci. Eng., A, 2020, 773, p 138728.

    Article  CAS  Google Scholar 

  4. W. Shi, S. Lu, J. Shen, B. Chen, J. Umeda, Q. Wei, K. Kondoh, and Y. Li, ASB Induced Phase Transformation in High Oxygen Doped Commercial Purity Ti, Mater. Sci. Eng., A, 2022, 830, p 142321.

    Article  CAS  Google Scholar 

  5. P.E. Markovsky, J. Janiszewski, V.I. Bondarchuk, O.O. Stasyuk, D.G. Savvakin, M.A. Skoryk, K. Cieplak, P. Dziewit, and S.V. Prikhodko, Effect of Strain Rate on Microstructure Evolution and Mechanical Behavior of Titanium-Based Materials, Metals, 2020, 10(11), p 1404.

    Article  CAS  Google Scholar 

  6. W. Liu, P. Cao, C. Zhao, Y. Song, and C. Tang, Effect of Temperature and Strain Rate on Deformation Mode and Crack Behavior of 7B52 Laminated Aluminum Alloy Under Impact Loading, Met. Mater. Int., 2020, 27(11), p 4397–4407.

    Article  Google Scholar 

  7. S.-G. Hong, S.H. Park, and C.S. Lee, Role of 10–12 Twinning Characteristics in the Deformation Behavior of a Polycrystalline Magnesium Alloy, Acta Mater., 2010, 58(18), p 5873–5885.

    Article  CAS  Google Scholar 

  8. X. Xu, T. Ali, L. Wang, H. Cheng, Z. Zhou, Z. Ning, X. Liu, A. Liu, B. Zhang, and X. Cheng, Research on Dynamic Compression Properties and Deformation Mechanism of Ti6321 Titanium Alloy, J. Market. Res., 2020, 9(5), p 11509–11516.

    CAS  Google Scholar 

  9. X. Chen, X. Zhang, C. Chen, and K. Zhou, Mechanical Response and Deformation Mechanisms of TB17 Titanium Alloy at High Strain Rates, Processes, 2021, 9(3), p 484.

    Article  CAS  Google Scholar 

  10. W.Y. Huang Wen, L. Zi-ran, and X. Yuan-ming, Influences of Temperature and Strain Rate on Deformation Twinning of Polycrystalline Titanium, Chin. J. Nonferr. Metals, 2008, 18, p 1440–1445.

    Google Scholar 

  11. D.R. Chichili, K.T. Ramesh, and K.J. Hemker, The High-Strain-Rate Response of Alpha-Titanium: Experiments, Deformation Mechanisms and Modeling, Acta Mater., 1998, 46(3), p 1025–1043.

    Article  CAS  Google Scholar 

  12. M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, and E.V. Pereloma, Strain Rate Dependence of Deformation-Induced Transformation and Twinning in a Metastable Titanium Alloy, Acta Mater., 2016, 104, p 190–200.

    Article  CAS  Google Scholar 

  13. J.L. Sun, P.W. Trimby, F.K. Yan, X.Z. Liao, N.R. Tao, and J.T. Wang, Grain Size Effect on Deformation Twinning Propensity in Ultrafine-Grained Hexagonal Close-Packed Titanium, Scr. Mater., 2013, 69(5), p 428–431.

    Article  CAS  Google Scholar 

  14. C. Zhang, A. Mu, Y. Wang, and H. Zhang, Study on Dynamic Mechanical Properties and Constitutive Model Construction of TC18 Titanium Alloy, Metals, 2019, 10(1), p 44.

    Article  Google Scholar 

  15. P. Zhou, B. Liu, and F. Sun, Mechanical Properties and Fracture Mechanism of Laser Solid Formed TC4 Titanium Alloy under Dynamic Compression, J. Phys: Conf. Ser., 2020, 1635, p 012088.

    CAS  Google Scholar 

  16. C. Ran, Q. Zhou, P. Chen, Q. Chen, and W. Zhang, Comparative Experimental Study of the Dynamic Properties and Adiabatic Shear Susceptibility of Titanium Alloys, Eur. J. Mech. A. Solids, 2021, 85, p 104137.

    Article  Google Scholar 

  17. B. Wang, J. Li, J. Sun, X. Luo, Z. Liu, and H. Liu, Adiabatic Shear Bands in Ti-6Al-4V Alloy with Lamellar Microstructure, J. Mater. Eng. Perform., 2014, 23(5), p 1896–1903.

    Article  CAS  Google Scholar 

  18. Y. Guo, R. Liu, A. Arab, Q. Zhou, B. Guo, Y. Ren, W. Chen, C. Ran, and P. Chen, Dynamic Behavior and Adiabatic Shearing Formation of the Commercially Pure Titanium with Explosion-Induced Gradient Microstructure, Mater. Sci. Eng., A, 2022, 833, p 142340.

    Article  CAS  Google Scholar 

  19. Y. Guo, Q. Ruan, S. Zhu, Q. Wei, J. Lu, B. Hu, X. Wu, and Y. Li, Dynamic Failure of Titanium: Temperature Rise and Adiabatic Shear Band Formation, J. Mech. Phys. Solids, 2020, 135, p 103811.

    Article  CAS  Google Scholar 

  20. G. Prakash, N.K. Singh, and N.K. Gupta, Flow Behaviour of Ti-6Al-4V Alloy in a Wide Range of Strain Rates and Temperatures under Tensile, Compressive and Flexural Loads, Int. J. Impact Eng., 2023, 176, p 104549.

    Article  Google Scholar 

  21. G. Prakash, N.K. Singh, P. Sharma, and N.K. Gupta, Tensile, Compressive, and Flexural Behaviors of Al5052-H32 in a Wide Range of Strain Rates and Temperatures, J. Mater. Civ. Eng., 2020, 32(5), p 04020090.

    Article  Google Scholar 

  22. G. Prakash, N.K. Singh, and N.K. Gupta, Mechanical Behavior of Magnesium Alloy AZ61 at Different Strain Rates and Temperatures under Tensile, Compressive, and Flexural Loads, J. Mater. Civ. Eng., 2020, 32(11), p 04020336.

    Article  CAS  Google Scholar 

  23. N.K. Singh, E. Cadoni, M.K. Singha, and N.K. Gupta, Dynamic Tensile and Compressive Behaviors of Mild Steel at Wide Range of Strain Rates, J. Eng. Mech., 2013, 139(9), p 1197–1206.

    Article  Google Scholar 

  24. B. Zhang, J. Wang, Y. Wang, Y. Wang, and Z. Li, Strain-Rate-Dependent Tensile Response of Ti(-)5Al(-)2.5Sn Alloy, Materials, 2019, 12(4), p 659.

    Article  CAS  Google Scholar 

  25. P.E. Markovsky and V.I. Bondarchuk, Influence of Strain Rate, Microstructure and Chemical and Phase Composition on Mechanical Behavior of Different Titanium Alloys, J. Mater. Eng. Perform., 2017, 26(7), p 3431–3449.

    Article  CAS  Google Scholar 

  26. Z. Yan, L. Wang, X. Xu, Z. Zhou, A. Liu, and Z. Ning, Response of Ti6321 Titanium Alloy at Different Strain Rates under Tensile Loading, Mater. Sci. Technol., 2022, 38(14), p 1037–1045.

    Article  CAS  Google Scholar 

  27. A. Momeni, S.M. Abbasi, M. Morakabati, and A. Akhondzadeh, Yield Point Phenomena in TIMETAL 125 Beta Ti Alloy, Mater. Sci. Eng., A, 2015, 643, p 142–148.

    Article  CAS  Google Scholar 

  28. H. Shi, X. Guo, J. Li, J. Mao, and W. Lu, The Gradual Disappearance of Yield Plateau in Zr–Sn–Nb–Fe–Mo Alloy by the Trace Addition of Cr and V, Mater. Sci. Eng., A, 2019, 760, p 407–414.

    Article  CAS  Google Scholar 

  29. Q. Luan, T.B. Britton, and T.-S. Jun, Strain Rate Sensitivity in Commercial Pure Titanium: The Competition Between Slip and Deformation Twinning, Mater. Sci. Eng., A, 2018, 734, p 385–397.

    Article  CAS  Google Scholar 

  30. R. Guo, B. Liu, R. Xu, Y. Cao, J. Qiu, F. Chen, Z. Yan, and Y. Liu, Microstructure and Mechanical Properties of Powder Metallurgy High Temperature Titanium Alloy with High Si Content, Mater. Sci. Eng., A, 2020, 777, p 138993.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere thanks for the financial support of ‘National Natural Science Foundation of China (NSFC)’ under Grant no. 12172304

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongbin Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hui, Y., Shen, J., Shi, X. et al. Superior Strain Rate Strengthening Effect and Ductility of a Ti-4.5Al-2.9V-3Fe Alloy under High Strain Rate Loading. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-09071-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09071-1

Keywords

Navigation