Skip to main content
Log in

Effect of Temperature and Strain Rate on Deformation Mode and Crack Behavior of 7B52 Laminated Aluminum Alloy Under Impact Loading

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The dynamic mechanical behaviors of 7B52 laminated aluminum alloy under different impact deformation conditions were investigated using split Hopkinson pressure bar, optical microscopy, electron backscatter diffraction and transmission electron microscopy. The results show that the 7B52 laminated aluminum alloy displays positive strain rate sensitivity and negative temperature sensitivity. Cracks are formed firstly at the interface between the 7A62 hard layer and the 7A01 middle layer under a low strain rate of 2200 s−1. When the strain rate increases to 3500 s−1, the deformation shear band is firstly formed in the 7A52 soft layer. The deformation shear band transformed to the transition shear band with the increase of strain rate, and then crack initiated. Adiabatic shear bands and cracks are formed in both of the hard and soft layers when samples impacted at a high strain rate (5500 s−1). Most of the cracks and adiabatic shear bands are unable to penetrate the middle layer due to the good toughness of the 7A01 alloy. The deformation of each layer of 7B52 laminated aluminum alloy becomes more uniform when the temperature increases, which was attributed to the reduction of difference in strength among the three layers and the coordinating effect of grain boundary on deformation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. T. Demir, M. Übeyli, R.O. Yıldırım, Mater. Des. 29, 2009 (2008)

    Article  CAS  Google Scholar 

  2. C. Mondal, B. Mishra, P.K. Jena, K. Siva Kumar, T.B. Bhat, Int. J. Impact Eng. 38, 745–754 (2011). https://doi.org/10.1016/j.ijimpeng.2011.03.001

    Article  Google Scholar 

  3. S.D. Liu, S.L. Wang, L.Y. Ye, Y.L. Deng, X.M. Zhang, Mater. Sci. Eng. A 677, 203 (2016)

    Article  CAS  Google Scholar 

  4. P.K. Jena, K.S. Kumar, R.K. Mandal, A.K. Singh, Procedia Struct. Integr. 17, 957 (2019)

    Article  Google Scholar 

  5. J. Jung, Y.J. Cho, S.H. Kim, Y.S. Lee, H.J. Kim, C.Y. Lim, Y.H. Park, Mater. Charact. 159, 110033 (2020)

    Article  CAS  Google Scholar 

  6. S.J. Pérez-Bergquist, G.T. Gray, E.K. Cerreta, C.P. Trujillo, A. Pérez-Bergquist, Mater. Sci. Eng. A 528, 8733 (2011)

    Article  Google Scholar 

  7. W.H. Liu, Z.T. He, Y.Q. Chen, S.W. Tang, Trans. Nonferrous Met. Soc. China 24, 2179 (2014)

    Article  CAS  Google Scholar 

  8. L.Y. Ye, G. Gu, X.M. Zhang, D.X. Sun, H.C. Jiang, P. Zhang, Mater. Sci. Eng. A 590, 97 (2014)

    Article  CAS  Google Scholar 

  9. G. Gu, L.Y. Ye, H.C. Jiang, D.X. Sun, P. Zhang, X.M. Zhang, Trans. Nonferrous Met. Soc. China 24, 2295 (2014)

    Article  CAS  Google Scholar 

  10. D.X. Sun, X.M. Zhang, L.Y. Ye, X.H. Gui, H.C. Jiang, G. Gu, Mater. Sci. Eng. A 640, 165 (2015)

    Article  CAS  Google Scholar 

  11. L.H. Liao, H. Jin, M. Gallerneault, S. Esmaeili, Mater. Charact. 94, 215 (2014)

    Article  CAS  Google Scholar 

  12. T.Q. Mo, Z.J. Chen, H.T. Huang, J.S. Lin, Q. Liu, Mater. Charact. 158, 109951 (2019)

    Article  CAS  Google Scholar 

  13. T.Q. Mo, Z.J. Chen, H. Chen, C. Hu, W.J. He, Q. Liu, Mater. Sci. Eng. A 766, 138354 (2019)

    Article  CAS  Google Scholar 

  14. V.G. Arigela, N.R. Palukuri, D. Singh, S.K. Kolli, R. Jayaganthan, P. Chekhonin, J. Scharnweber, W. Skrotzki, J. Alloy. Compd. 790, 917 (2019)

    Article  CAS  Google Scholar 

  15. X. Chen, J.L. Zhang, D.B. Xia, G.S. Huang, K. Liu, B. Jiang, A.T. Tang, F.S. Pan, J. Alloy. Compd. 826, 154094 (2020)

    Article  CAS  Google Scholar 

  16. G.X. Zhou, Y.J. Lang, J. Hao, W. Liu, S. Wang, L. Qiao, M. Chen, Trans. Nonferrous Met. Soc. China 26, 1269 (2016)

    Article  CAS  Google Scholar 

  17. X.Q. Teng, S. Dey, T. Børvik, T. Wierzbicki, J. Mech. Mat. Struct. 2, 1309 (2007)

    Article  Google Scholar 

  18. M. Pozuelo, F. Carreño, C.M. Cepeda-Jiménez, O.A. Ruano, Metall. Mat. Trans. A 39, 666 (2008)

    Article  Google Scholar 

  19. M.Y. Li, B.Q. Xiong, G.J. Wang, Y.Z. Tong, X.W. Li, S.H. Huang, Z.H. Li, Y.A. Zhang, Rare Met. 36, 737 (2017)

    Article  CAS  Google Scholar 

  20. G.C. Zhu, S.H. Huang, X.W. Li, Z.H. Li, Y.Z. Tong, Y.A. Zhang, B.Q. Xiong, Prog. Nat. Sci. Mat. Int. 28, 510 (2018)

    Article  CAS  Google Scholar 

  21. T. Fras, C.C. Roth, D. Mohr, Int. J. Impact Eng. 131, 256 (2019)

    Article  Google Scholar 

  22. X.M. Zhang, H.J. Li, H.Z. Li, H. Gao, Z.G. Gao, Y. Liu, B. Liu, Trans. Nonferrous Met. Soc. China 18, 1 (2008)

    Article  Google Scholar 

  23. C.P. Tang, K. Wu, W.H. Liu, D. Feng, G.L. Zuo, W.Y. Liang, Y. Yang, X. Chen, Q. Li, X. Liu, Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00558-y

    Article  Google Scholar 

  24. M.J. Styles, T.J. Bastow, M.A. Gibson, C.R. Hutchinson, Intermetallics 49, 40 (2014)

    Article  CAS  Google Scholar 

  25. J.T. Liu, Y.A. Zhang, X.W. Li, Z.H. Li, B.Q. Xiong, J.S. Zhang, Trans. Nonferrous Met. Soc. China 24, 1481 (2014)

    Article  CAS  Google Scholar 

  26. T. Tsuru, M. Yamaguchi, K. Ebihara, M. Itakura, Y. Shiihara, K. Matsuda, H. Toda, Comput. Mater. Sci. 148, 301 (2018)

    Article  CAS  Google Scholar 

  27. L.E. Murr, E.V. Esquivel, J. Mater. Sci. 39, 1153 (2004)

    Article  CAS  Google Scholar 

  28. W.S. Lee, W.C. Sue, C.F. Lin, C.J. Wu, J. Mater. Process. Technol. 100, 116 (2000)

    Article  Google Scholar 

  29. F. Barlat, M.V. Glazov, J.C. Brem, D.J. Lege, Int. J. Plast 18, 919 (2002)

    Article  CAS  Google Scholar 

  30. C.X. Huang, W.P. Hu, Q.Y. Wang, Mater. Sci. Eng. A 611, 274 (2014)

    Article  CAS  Google Scholar 

  31. E.I. Galindo-Nava, C.M.F. Rae, Mater. Sci. Eng. A 651, 116 (2016)

    Article  CAS  Google Scholar 

  32. W.L. Zhang, X.F. Chen, B.C. Zhuo, P.J. Li, L.J. He, Mater. Sci. Eng. A 730, 336 (2018)

    Article  CAS  Google Scholar 

  33. S.T. Chiou, W.C. Cheng, W.S. Lee, Mater. Sci. Eng. A 392, 156 (2005)

    Article  Google Scholar 

  34. V. Pare, S. Modi, K.N. Jonnalagadda, Mater. Sci. Eng. A 668, 38 (2016)

    Article  CAS  Google Scholar 

  35. Q. Wang, Z.H. Chen, Z.F. Chen, Mater. Des. 46, 634 (2013)

    Article  CAS  Google Scholar 

  36. Y.B. Xu, W.L. Zhong, Y.J. Chen, L.T. Shen, Q. Liu, Y.L. Bai, M.A. Meyers, Mater. Sci. Eng. A 299, 287 (2001)

    Article  Google Scholar 

  37. A.G. Odeshi, M.N. Bassim, Mater. Sci. Eng. A 525, 96 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to appreciate the financial supports from National Natural Science Foundation of China (Grant Nos. 51875197 and 51905166), Hunan Provincial Natural Science Foundation of China (Grant No. 2020JJ6027) and Excellent Youth Project of Hunan Provincial Department of Education (Grant No. 19B214).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenhui Liu or Changping Tang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Cao, P., Zhao, C. et al. Effect of Temperature and Strain Rate on Deformation Mode and Crack Behavior of 7B52 Laminated Aluminum Alloy Under Impact Loading. Met. Mater. Int. 27, 4397–4407 (2021). https://doi.org/10.1007/s12540-020-00853-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00853-z

Keywords

Navigation