Skip to main content

Advertisement

Log in

Structure-Property-Process Parameters Correlation of Laser Shock-Peened Titanium Alloy (Ti6Al4V) Without Protective Layer

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, the effect of laser intensity on the microstructure, residual stress, microhardness, and corrosion resistance property of laser shock peened Ti6Al4V using an Nd: YAG laser has been investigated. The applied laser intensity varied from 1 to 8 GW/cm2. During the processing, the pulse density was 574 pulses/cm2, and water was used as a confining layer. Due to laser shock peening, there is refinement of microstructure and presence of oxides on the surface. The residual stress on the surface was found to vary from + 130.12 to − 138.16 MPa and varied with process parameters. There is an increase in microhardness which also varied with process parameters. Due to laser surface processing, there is a significant improvement in corrosion resistance. A detailed structure–property correlation has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Zhang and L. Chen, A Review on Biomedical Titanium Alloys: Recent Progress and Prospect, Adv. Eng. Mater., 2019, 21(4), p 1801215. https://doi.org/10.1002/adem.201801215

    Article  CAS  Google Scholar 

  2. M. Kaur and K. Singh, Review on Titanium and Titanium Based Alloys as Biomaterials for Orthopaedic Applications, Mater. Sci. Eng. C, 2019, 2019(102), p 844–862. https://doi.org/10.1016/j.msec.2019.04.064

    Article  CAS  Google Scholar 

  3. T. Xue, S. Attarilar, S. Liu, J. Liu, X. Song, L. Li, B. Zhao, and Y. Tang, Surface Modification Techniques of Titanium and Its Alloys to Functionally Optimize Their Biomedical Properties: Thematic Review, Front. Bioeng. Biotechnol., 2020, 8(November), p 1–19. https://doi.org/10.3389/fbioe.2020.603072

    Article  Google Scholar 

  4. D. Rodrigues, P. Valderrama, T. Wilson, K. Palmer, A. Thomas, S. Sridhar, A. Adapalli, M. Burbano, and C. Wadhwani, Titanium Corrosion Mechanisms in the Oral Environment: A Retrieval Study, Materials (Basel), 2013, 6(11), p 5258–5274. https://doi.org/10.3390/ma6115258

    Article  CAS  Google Scholar 

  5. M. Noronha Oliveira, W.V.H. Schunemann, M.T. Mathew, B. Henriques, R.S. Magini, W. Teughels, and J.C.M. Souza, Can Degradation Products Released from Dental Implants Affect Peri-implant Tissues?, J. Periodontal Res., 2018, 53(1), p 1–11. https://doi.org/10.1111/jre.12479

    Article  CAS  Google Scholar 

  6. J.C.M. Souza, M. Henriques, W. Teughels, P. Ponthiaux, J.-P. Celis, and L.A. Rocha, Wear and Corrosion Interactions on Titanium in Oral Environment: Literature Review, J. Bio- Tribo-Corrosion, 2015, 1(2), p 13. https://doi.org/10.1007/s40735-015-0013-0

    Article  Google Scholar 

  7. T. Hanawa, Metal Ion Release from Metal Implants, Mater. Sci. Eng. C, 2004, 24(6–8), p 745–752. https://doi.org/10.1016/j.msec.2004.08.018

    Article  CAS  Google Scholar 

  8. T.G. Wilson, P. Valderrama, M. Burbano, J. Blansett, R. Levine, H. Kessler, and D.C. Rodrigues, Foreign Bodies Associated With Peri-Implantitis Human Biopsies, J. Periodontol., 2015, 86(1), p 9–15. https://doi.org/10.1902/jop.2014.140363

    Article  Google Scholar 

  9. J.C.M. Souza, K. Apaza-Bedoya, C.A.M. Benfatti, F.S. Silva, and B. Henriques, A Comprehensive Review on the Corrosion Pathways of Titanium Dental Implants and Their Biological Adverse Effects, Metals (Basel), 2020, 10(9), p 1272. https://doi.org/10.3390/met10091272

    Article  CAS  Google Scholar 

  10. G.O. Alrabeah, P. Brett, J.C. Knowles, and H. Petridis, The Effect of Metal Ions Released from Different Dental Implant-Abutment Couples on Osteoblast Function and Secretion of Bone Resorbing Mediators, J. Dent., 2017, 66(March), p 91–101. https://doi.org/10.1016/j.jdent.2017.08.002

    Article  CAS  Google Scholar 

  11. W. Pfleging, R. Kumari, H. Besser, T. Scharnweber, and J.D. Majumdar, Laser Surface Textured Titanium Alloy (Ti-6Al-4V): Part 1 - Surface Characterization, Appl. Surf. Sci., 2015, 355, p 104–111. https://doi.org/10.1016/j.apsusc.2015.06.175

    Article  CAS  Google Scholar 

  12. R. Kumari, T. Scharnweber, W. Pfleging, H. Besser, and J.D. Majumdar, Laser Surface Textured Titanium Alloy (Ti-6Al-4V) - Part II - Studies on Bio-Compatibility, Appl. Surf. Sci., 2015, 357, p 750–758.

    Article  CAS  Google Scholar 

  13. R. Kumari and J.D. Majumdar, Studies on Corrosion Resistance and Bio-Activity of Plasma Spray Deposited Hydroxylapatite (HA) Based TiO2 and ZrO2 Dispersed Composite Coatings on Titanium Alloy (Ti-6Al-4V) and the Same after Post Spray Heat Treatment, Appl. Surf. Sci., 2017, 420, p 935–943. https://doi.org/10.1016/j.apsusc.2017.05.208

    Article  CAS  Google Scholar 

  14. M. Dileep, R. Bathe, I. Manna, G. Padmanabham, and J. Dutta Majumdar, Ultrafast Laser-Induced Periodic Structuring of Titanium Alloy (Ti-6Al-4V), J. Mater. Eng. Perform., 2021, 30(6), p 4000–4011. https://doi.org/10.1007/s11665-021-05779-0

    Article  CAS  Google Scholar 

  15. S.B. Patel, A. Hamlekhan, D. Royhman, A. Butt, J. Yuan, T. Shokuhfar, C. Sukotjo, M.T. Mathew, G. Jursich, and C.G. Takoudis, Enhancing Surface Characteristics of Ti-6Al-4V for Bio-Implants Using Integrated Anodization and Thermal Oxidation, J. Mater. Chem. B, 2014, 2(23), p 3597. https://doi.org/10.1039/c3tb21731k

    Article  CAS  Google Scholar 

  16. X. Liu, P.K. Chu, and C. Ding, Surface Modification of Titanium, Titanium Alloys, and Related Materials for Biomedical Applications, Mater. Sci. Eng. R Rep., 2004, 47(3–4), p 49–121.

    Article  Google Scholar 

  17. B. Dhakal and S. Swaroop, Review: Laser Shock Peening as Post Welding Treatment Technique, J. Manuf. Process., 2018, 2018(32), p 721–733. https://doi.org/10.1016/j.jmapro.2018.04.006

    Article  Google Scholar 

  18. C. Zhang, Y. Dong, and C. Ye, Recent Developments and Novel Applications of Laser Shock Peening: A Review, Adv. Eng. Mater., 2021, 23(7), p 2001216. https://doi.org/10.1002/adem.202001216

    Article  Google Scholar 

  19. R.K. Gupta, B.K. Pant, V. Kain, R. Kaul, and K.S. Bindra, 2019 Laser Shock Peening and Its Applications: A Review, Lasers Manuf. Mater. Process., 2019, 6(4), p 424–463. https://doi.org/10.1007/s40516-019-00098-8

    Article  Google Scholar 

  20. J.L. Hu, J. Lou, H.C. Sheng, S.H. Wu, G.X. Chen, K.F. Huang, L. Ye, Z.K. Liu, Y.L. Shi, and S. Yin, The Effects of Laser Shock Peening on Microstructure and Properties of Metals and Alloys: A Review, Adv. Mater. Res., 2011, 347–353, p 1596–1604. https://doi.org/10.4028/www.scientific.net/AMR.347-353.1596

    Article  CAS  Google Scholar 

  21. K. Praveenkumar, P. Mylavarapu, and S. Swaroop, Surface Oxidation and Subsurface Deformation in a Laser-Peened Ti-6Al-4V, J. Mater. Eng. Perform., 2022 https://doi.org/10.1007/s11665-022-07639-x

    Article  Google Scholar 

  22. S. Prabhakaran, A. Kulkarni, G. Vasanth, S. Kalainathan, P. Shukla, and V.K. Vasudevan, Laser Shock Peening without Coating Induced Residual Stress Distribution, Wettability Characteristics and Enhanced Pitting Corrosion Resistance of Austenitic Stainless Steel, Appl. Surf. Sci., 2018, 428, p 17–30. https://doi.org/10.1016/j.apsusc.2017.09.138

    Article  CAS  Google Scholar 

  23. S. Petronić, K. Čolić, B. Đorđević, D. Milovanović, M. Burzić, and F. Vučetić, Effect of Laser Shock Peening with and without Protective Coating on the Microstructure and Mechanical Properties of Ti-Alloy, Opt. Lasers Eng., 2020, 129, p 106052.

    Article  Google Scholar 

  24. B. Jose, T. Patil, S. Sudhagara Rajan, K. Praveenkumar, G. Manivasagam, and S. Swaroop, Effect of Laser Shock Peening without Coating (LPwC) on a Surface and Sub-Surface Characteristics of Aged Ti 15V-3Al-3Cr-3Sn Alloy, Mater. Today Proc., 2021, 46, p 578–582. https://doi.org/10.1016/j.matpr.2020.11.289

    Article  CAS  Google Scholar 

  25. Y. Sano, M. Obata, T. Kubo, N. Mukai, M. Yoda, K. Masaki, and Y. Ochi, Retardation of Crack Initiation and Growth in Austenitic Stainless Steels by Laser Peening without Protective Coating, Mater. Sci. Eng. A, 2006, 417(1–2), p 334–340. https://doi.org/10.1016/j.msea.2005.11.017

    Article  CAS  Google Scholar 

  26. S. Kalainathan, S. Sathyajith, and S. Swaroop, Effect of Laser Shot Peening without Coating on the Surface Properties and Corrosion Behavior of 316L Steel, Opt. Lasers Eng., 2012, 50(12), p 1740–1745. https://doi.org/10.1016/j.optlaseng.2012.07.007

    Article  Google Scholar 

  27. U. Trdan and J. Grum, SEM/EDS Characterization of Laser Shock Peening Effect on Localized Corrosion of Al Alloy in a near Natural Chloride Environment, Corros. Sci., 2014, 82, p 328–338. https://doi.org/10.1016/j.corsci.2014.01.032

    Article  CAS  Google Scholar 

  28. G. Ranjith Kumar, G. Rajyalakshmi, S. Swaroop, S. ArulXavierStango, and U. Vijayalakshmi, Laser Shock Peening Wavelength Conditions for Enhancing Corrosion Behaviour of Titanium Alloy in Chloride Environment, J. Brazil. Soc. Mech. Sci. Eng., 2019, 41(3), p 129. https://doi.org/10.1007/s40430-019-1633-y

    Article  CAS  Google Scholar 

  29. G. Ranjith Kumar and G. Rajyalakshmi, Role of Nano Second Laser Wavelength Embedded Recast Layer and Residual Stress on Electrochemical Corrosion of Titanium Alloy, Mater. Res. Express, 2019, 6(8), p 086583. https://doi.org/10.1088/2053-1591/ab1fb2

    Article  CAS  Google Scholar 

  30. A. Chattopadhyay, G. Muvvala, S. Sarkar, V. Racherla, and A.K. Nath, Effect of Laser Shock Peening on Microstructural, Mechanical and Corrosion Properties of Laser Beam Welded Commercially Pure Titanium, Opt. Laser Technol., 2021, 2021(133), p 106527. https://doi.org/10.1016/j.optlastec.2020.106527

    Article  CAS  Google Scholar 

  31. C.A. Reynoso-Garcia, G. Gomez-Rosas, O. Blanco, C. Rubio-Gonzalez, A.C. Chavez, E. Castañeda, and J.L. Ocaña, Improving the Surface Properties of Ti6Al4V with Laser Shock Processing, Int. J. Peen. Sci. Technol., 2018, 1, p 119–136.

    Google Scholar 

  32. S. Varin, Y. Jain, S. Prabhakaran, and S. Kalainathan, Influence of Multiple Laser Shock Peening without Coating on Ti-6Al-4V Alloy for Aircraft Applications, Mech. Mater. Sci. Eng., 2017, p 363–367.

  33. D. Madapana, H. Ramadas, A.K. Nath, and J. Dutta Majumdar, Studies on Laser Shock Peening on Nanomechanical and Mechano-Chemical Properties of Titanium Alloy (Ti6Al4V), JOM, 2022, 75, p 109–119. https://doi.org/10.1007/s11837-022-05504-9

    Article  CAS  Google Scholar 

  34. X. Shen, P. Shukla, S. Nayak, V. Gopal, P. Subramanian, A. Sarah Benjamin, and S. Kalainathan, Biological and Mechanical Response of Laser Shock Peening Orthopaedic Titanium Alloy (Ti-6Al-7Nb), Proc. Inst. Mech. Eng. Part H J. Eng. Med., 2022, 236(8), p 1169–1187.

    Article  Google Scholar 

  35. M. Dileep and J.D. Majumdar, Corrosion and Tribocorrosion Behaviour of Laser Shock Peened Ti6Al4V, (under submission), 2022.

Download references

Acknowledgment

Partial financial supports from the Science and Engineering Research Board, N. Delhi (POWER Fellowship, SPF/2021/000073, Dt. 11-03-2021), Ministry of Human Resource Development (MHRD), Government of India (under IMPRINT-2, sanction letter IMP/2018/001162, Dt. 02-01-2019), Department of Science and Technology (DST), N. Delhi (DST/TSG/AMT/2015/636/G, Dt. 18-06-2018, DST/TDT/AMT/2017/074 (G), Dt. 12-09-2018), and Alexander von Humboldt Foundation (Friedrich Wilhelm Bessel Award), Bonn, Germany, are gratefully acknowledged. Experimental supports from Indian Institute of Technology Kharagpur (Pulsed Laser Lab and Central Research Facility) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dutta Majumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is an invited submission to the Journal of Materials Engineering and Performance selected from presentations at the 4th International Conference on Processing & Characterization of Materials (ICPCM 2022) held December 9–11, 2022, at the National Institute of Technology, Rourkela, Odisha, India. It has been expanded from the original presentation. The issue was organized by Prof. Joao Pedro Oliveira, Universidade NOVA de Lisboa, Portugal; Prof. B. Venkata Manoj Kumar, Indian Institute of Technology Roorkee, India; Dr. D. Arvindha Babu, DMRL, DRDO, Hyderabad, India; Prof. Kumud Kant Mehta and Prof. Anshuman Patra, National Institute of Technology Rourkela, Odisha, India; and Prof. Manab Mallik, National Institute of Technology Durgapur, India.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madapana, D., Ramadas, H., Nath, A.K. et al. Structure-Property-Process Parameters Correlation of Laser Shock-Peened Titanium Alloy (Ti6Al4V) Without Protective Layer. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08900-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08900-7

Keywords

Navigation