Skip to main content
Log in

Ultrafast Laser-Induced Periodic Structuring of Titanium Alloy (Ti-6Al-4V)

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present study, laser periodic structuring of titanium-based alloy (Ti-6Al-4V) has been carried out using Ti:Sapphire laser with the wavelength of 800 nm and pulse duration of 3 ps and 100 fs with varying peak fluence and scan speed. After laser irradiation, the topography of the surface has been recorded using 3D surface profilometer. Laser surface processing leads to the formation of a periodically patterned surface with the average ablation depth of 37.25 µm-42.13 and average surface roughness of 0.991-1.862 µm as compared to 0.169 µm average roughness of as-received Ti-6Al-4V. In the microstructure, there is presence of fine periodic ripples with an average ripple width of 0.48 µm to 0.54 µm when processed with 3 ps laser and the average ripple width of 0.17 μm in addition to the presence of very fine pits, deposited particle, and oxide dispersed surface when processed with 100 fs laser. The microhardness of the surface is improved (395 VHN-373 VHN ) as compared to 282 VHN of as-received Ti-6Al-4V. There is a significant improvement in the corrosion resistance in terms of a decrease in corrosion rate (0.0037 to 0.0008 mm/year) in laser surface processed sample as compared to as-received Ti-6Al-4V (0.0932 mm/year) in Hank’s solution and also increase in pitting corrosion resistance in terms of increase in critical potential for pit formation (Epit) under a few employed parameters with both 3 ps laser (at a laser fluence of 0.063 J/cm2 and a scan speed of 20 mm/sec) and 100 fs laser (at a laser fluence of 0.63 J/cm2 and at a scan speed of 60 mm/sec).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.C. Phillips, H.H. Gandhi, E. Mazur and S.K. Sundaram, Ultrafast laser processing of materials: a review, Adv. Opt. Photonics, 2015, 7(4), p 684–712.

    Article  CAS  Google Scholar 

  2. B. Gu, Ultrafast laser applications in semiconductor industry, Photon Process. Microelectron. Photonics III, 2004, 2004(5339), p 226–230.

    Article  Google Scholar 

  3. D. Strickland and G. Mourou, Compression of amplified chirped optical pulses, Opt. Commun., 1985, 56(3), p 219–221.

    Article  Google Scholar 

  4. M. Pessot, P. Maine and G. Mourou, 1000 times expansion/compression for chirped pulse amplification of optical pulses, Opt. Commun., 1987, 62(6), p 419–421.

    Article  CAS  Google Scholar 

  5. S. Küper and M. Stuke, Ablation of polytetrafluoroethylene (Teflon) with femtosecond UV excimer laser pulses, Appl. Phys. Lett., 1989, 54(1), p 4–6.

    Article  Google Scholar 

  6. J. Squier, D. Harter, F. Salin and G. Mourou, 100-Fs pulse generation and amplification in Ti:Al_2O_3, Opt. Lett., 1991, 16(5), p 324–326.

    Article  CAS  Google Scholar 

  7. F. Salin, C. Rouyer, J. Squier, S. Coe and G. Mourou, Chirped-pulse amplification of 55-Fs pulses at a 1-kHz repetition rate in a Ti: Al203 regenerative amplifier, Opt. Commun., 1991, 84(1–2), p 67–70.

    Article  CAS  Google Scholar 

  8. K.M. Davis, K. Miura, N. Sugimoto and K. Hirao, Writing waveguides in glass with a femtosecond laser, Opt. Lett., 1996, 21(21), p 1729–1731.

    Article  CAS  Google Scholar 

  9. S. Maruo, O. Nakamura and S. Kawata, Three-dimensional microfabrication with two-photon-absorbed photopolymerization, Opt. Lett., 1997, 22(2), p 132–134.

    Article  CAS  Google Scholar 

  10. M. Hashida, M. Fujita, M. Tsukamoto, A.F. Semerok, O. Gobert, G. Petite, Y. Izawa and J.-F. Wagner, Femtosecond laser ablation of metals: precise measurement and analytical model for crater profiles, Third international symposium on laser precision microfabrication, Vol 4830, International Society for Optics and Photonics, Washington, 2003, p 452–457

    Chapter  Google Scholar 

  11. F. Costache, M. Henyk and J. Reif, Surface patterning on insulators upon femtosecond laser ablation, Appl. Surf. Sci., 2003, 208–209(1), p 486–491.

    Article  Google Scholar 

  12. A. Borowiec and H.K. Haugen, Subwavelength ripple formation on the surfaces of compound semiconductors irradiated with femtosecond laser pulses, Appl. Phys. Lett., 2003, 82(25), p 4462–4464.

    Article  CAS  Google Scholar 

  13. A. Arai, J. Bovatsek, F. Yoshino, Z. Liu, G.C. Cho, L. Shah, M.E. Fermann, Y. Uehara, Fiber chirped pulse amplification system for micromachining. in Photonics North, vol 6343 (International Society for Optics and Photonics, Washington, 2006), p. 63430

  14. J. Kleinbauer, D. Eckert, S. Weiler and D.H. Sutter, 80 W ultrafast CPA-free disk laser, Solid State Lasers XVII Technol. Devices, 2008, 2008(6871), p 68711B.

    Article  Google Scholar 

  15. T. Südmeyer, S.V. Marchese, C.R.E. Baer, S. Hashimoto, A.G. Engqvist, M. Golling, D.J.H.C. Maas and U. Keller, Femtosecond thin disk laser oscillator with pulse energy beyond the 10-microjoule level, Opt. InfoBase Conf. Pap., 2008, 16(9), p 6397–6407.

    Google Scholar 

  16. S.E. Clark and D.C. Emmony, Ultraviolet-laser-induced periodic surface structures, Phys. Rev. B, 2000, 40(4), p 2031–2041.

    Article  Google Scholar 

  17. A. Biswas, L. Li, T.K. Maity, U.K. Chatterjee, B.L. Mordike, I. Manna and J. Dutta Majumdar, Laser surface treatment of Ti-6Al-4V for bio-implant application, Lasers Eng., 2007, 17(1–2), p 59–73.

    CAS  Google Scholar 

  18. J. Probst, U. Gbureck and R. Thull, Binary nitride and oxynitride PVD coatings on titanium for biomedical applications, Surf. Coat. Technol., 2001, 148(2–3), p 226–233.

    Article  CAS  Google Scholar 

  19. X. Liu, P.K. Chu and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Mater. Sci. Eng. R Rep., 2004, 47(3–4), p 49–121.

    Article  Google Scholar 

  20. A. Kurella and N.B. Dahotre, Review paper: surface modification for bioimplants: the role of laser surface engineering, J. Biomater. Appl., 2005, 20(1), p 5–50.

    Article  Google Scholar 

  21. W. Pfleging, R. Kumari, H. Besser, T. Scharnweber and J.D. Majumdar, Laser surface textured titanium alloy (Ti-6Al-4V): part 1-surface characterization, Appl. Surf. Sci., 2015, 355, p 104–111.

    Article  CAS  Google Scholar 

  22. R. Kumari, T. Scharnweber, W. Pfleging, H. Besser and J.D. Majumdar, Laser surface textured titanium alloy (Ti-6Al-4V)-part II-studies on bio-compatibility, Appl. Surf. Sci., 2015, 357, p 750–758.

    Article  CAS  Google Scholar 

  23. J.M. Liu, Simple technique for measurements of pulsed Gaussian-beam spot sizes, Opt. Lett., 1982, 7(5), p 196.

    Article  CAS  Google Scholar 

  24. M.C. Kong and J. Wang, Surface quality analysis of titanium and nickel-based alloys using picosecond laser, Procedia CIRP, 2014, 13, p 417–422.

    Article  Google Scholar 

  25. N. Maharjan, W. Zhou, Y. Zhou and Y. Guan, Ablation morphology and ablation threshold of Ti-6Al-4V alloy during femtosecond laser processing, Appl. Phys. A Mater. Sci. Process., 2018, 124(8), p 1–10.

    Article  Google Scholar 

  26. B.D. Cullity and S.R. Stock, Elements of X-Ray Diffraction, 3rd ed. Prentice-Hall, New York, 2001.

    Google Scholar 

  27. H. Wang, J. Jürgensen, P. Decker, Z. Hu, K. Yan, E.L. Gurevich and A. Ostendorf, Corrosion behavior of NiTi alloy subjected to femtosecond laser shock peening without protective coating in air environment, Appl. Surf. Sci., 2020, 501, p 1–9.

    Google Scholar 

  28. J. Park, H.S. Han, J. Park, H. Seo, J. Edwards, Y.C. Kim, M.R. Ok, H.K. Seok and H. Jeon, Corrosion behavior of biodegradable Mg-based alloys via femtosecond laser surface melting, Appl. Surf. Sci., 2018, 448, p 424–434.

    Article  CAS  Google Scholar 

  29. D.C. Emmony, R.P. Howson, and L.J. Willis, Laser Mirror Damage in Germanium at 10.6 Μm, Appl. Phys. Lett., 1973, 23(11), p 598–600.

  30. S. Gräf and F.A. Müller, Polarisation-dependent generation of Fs-laser induced periodic surface structures, Appl. Surf. Sci., 2015, 331, p 150–155.

    Article  Google Scholar 

  31. G. Schnell, U. Duenow and H. Seitz, Effect of laser pulse overlap and scanning line overlap on femtosecond laser-structured Ti6Al4V surfaces, Materials, 2020, 13(4), p 969.

    Article  CAS  Google Scholar 

  32. C. Florian, R. Wonneberger, A. Undisz, S.V. Kirner, K. Wasmuth, D. Spaltmann, J. Krüger and J. Bonse, Chemical effects during the formation of various types of femtosecond laser-generated surface structures on titanium alloy, Appl. Phys. A Mater. Sci. Process., 2020, 126(4), p 1–11.

    Article  Google Scholar 

  33. E.M. Garcell, S.C. Singh, H. Li, B. Wang, S.A. Jalil and C. Guo, Comparative study of femtosecond laser-induced structural colorization in water and air, Nanoscale Adv., 2020, 2(7), p 2958–2967.

    Article  CAS  Google Scholar 

  34. H. Wang, E. Gurevich, and A. Ostendorf, Microhardness and microabrasion behaviour of NiTi shape memory alloy after femtosecond laser shock peening without coating in air. In High-Power Laser Materials Processing: Applications, Diagnostics, and Systems IX, vol 11273 (International Society for Optics and Photonics, Washington) p. 1127301

  35. J.D. Majumdar, E.L. Gurevich, R. Kumari and A. Ostendorf, Investigation on femto-second laser irradiation assisted shock peening of medium carbon (0.4% C) Steel, Appl. Surf. Sci., 2016, 364, p 133–140.

    Article  CAS  Google Scholar 

  36. M.G. Fontana, Corrosion Engineering, 3rd ed. Tata McGraw-Hill Education, New York, 2005.

    Google Scholar 

  37. K.M. Łęcka, A.J. Antończak, B. Szubzda, M.R. Wójcik, B.D. Stępak, P. Szymczyk, M. Trzciński, M. Ozimek and K.M. Abramski, Effects of laser-induced oxidation on the corrosion resistance of AISI 304 stainless steel, J. Laser Appl., 2016, 28(3), p 032009.

    Article  Google Scholar 

  38. L.R. de Lara, R. Jagdheesh and J.L. Ocaña, Corrosion resistance of laser patterned ultra hydrophobic aluminium surface, Mater. Lett., 2016, 184, p 100–103.

    Article  Google Scholar 

Download references

Acknowledgments

Partial financial supports from Department of Science and Technology (DST), N. Delhi (DST/TSG/AMT/2015/636/G, Dt. 18-06-2018 and DST/TDT/AMT/2017/074 (G), Dt. 12-09-2018) and Alexander von Humboldt Foundation are gratefully acknowledged. Experimental supports from ARCI, Hyderabad Central Research Facility, Indian Institute of Technology Kharagpur, India are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotsna Dutta Majumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This invited article is part of a special topical focus in the Journal of Materials Engineering and Performance on Surface Engineering. The issue was organized by Dr. M.K. Banerjee, Malaviya National Institute of Technology, Jaipur.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dileep, M., Bathe, R., Manna, I. et al. Ultrafast Laser-Induced Periodic Structuring of Titanium Alloy (Ti-6Al-4V). J. of Materi Eng and Perform 30, 4000–4011 (2021). https://doi.org/10.1007/s11665-021-05779-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-021-05779-0

Keywords

Navigation