Skip to main content
Log in

Effect of Heat Treatment on Mechanical Properties of AISI 202 Steel at Room Temperature and 77 K

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The performance and properties of austenitic stainless steels are strongly linked to their microstructures, mainly the amount, distribution and orientation of delta (δ) ferrite and the presence of sigma (σ) phase. AISI 202 steel in annealed (as received-AR) as well as heat treated and forced air cooled (FAC)/furnace cooled (FC) conditions contains austenitic phase and ~ 4 vol.% δ-ferrite phases. In FC condition σ-phase is also observed which is formed during the slow cooling of steel in the temperature range of 850-450 °C. Impact properties are found to be better at room temperature than 77 K. Higher impact strength is found for FAC than FC condition both at 300 and 77 K. The test temperature dependent reduction in impact strength is found to be higher for FC specimens compared to AR and FAC specimens. U-notch showed higher impact values compared to V-notch specimens at 77 K test temperature. With 4 vol.% δ-ferrite having aspect ratio of ~ 4-40, the notch direction has not shown significant effect on the impact properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Barnard, Materials for Ultra-supercritical and Advanced Ultra-supercritical Power Plants, Elsevier, 2017, p 99–119

    Book  Google Scholar 

  2. V.S. Raja and T. Shoji, Stress Corrosion Cracking Theory and Practice, 1st ed. Woodhead Publishing, 2011, p 199–244

    Book  Google Scholar 

  3. R.L. Plaut, C. Herrera, D.M. Escriba, P.R. Rios, and A.F. Padilha, A Short Review on Wrought Austenitic Stainless Steels at High Temperatures: Processing, Microstructure, Properties and Performance, Mater. Res., 2007, 10(4), p 453–460.

    Article  CAS  Google Scholar 

  4. M.A. Martorano, C.F. Tavares, and A.F. Padilha, Predicting Delta Ferrite Content in Stainless Steel Castings, ISIJ Int., 2012, 52(6), p 1054–1065.

    Article  CAS  Google Scholar 

  5. C. Wu, S. Li, C. Zhang, and X. Wang, Microstructural Evolution in 316LN Austenitic Stainless Steel during Solidification Process under Different Cooling Rates, J. Mater. Sci., 2016, 51, p 2529–2539.

    Article  CAS  Google Scholar 

  6. M.A. Valiente Bermejo, Materials Behaviour and Weldability Influence of the [creq+Nieq] Alloy Level on the Transition between Solidification Modes in Austenitic Stainless Steel, Weld Metal. Weld World, 2012, 56, p 2–14.

    Article  Google Scholar 

  7. C.-C. Hsieh, W. Wu, Overview of Intermetallic Sigma (σ) Phase Precipitation in Stainless Steels. ISRN Metallurgy, 2012, 1–16.

  8. P. Duhaj, J. Ivan, and E. Makovicky, Sigma Phase Precipitation in Austenitic Steels, J. Iron Steel Inst., 1968, 206, p 1245–1252.

    CAS  Google Scholar 

  9. M.S. Dean and W.J. Plumbridge, Prediction of Sigma Phase Formation in Stainless Steels, Nuclear Energy, 1982, 21(2), p 119–135.

    CAS  Google Scholar 

  10. J. Barcik, The Process of σ-Phase Solution in 25 pct Cr-20 pct Ni Austenitic Steels, Metall. Trans. A, 1987, 18A(7), p 1171–1177.

    Article  CAS  Google Scholar 

  11. J. Barcik, Mechanism of σ Phase Precipitation in Cr-Ni Austenitic Steels, Mater. Sci. Technol., 1988, 4(1), p 5–15.

    Article  CAS  Google Scholar 

  12. A.V. Kington and F.W. Noble, Formation of σ Phase in Wrought 310 Stainless Steel, Mater. Sci. Technol., 1995, 11(3), p 268–283.

    Article  CAS  Google Scholar 

  13. D.M. Escriba Villanueva, F.C. Pimenta Jr., R.L. Plaut, and A.F. Padilha, Comparative Study on Sigma Phase Precipitation of Three Types of Stainless Steels: Austenitic, Superferritic and Duplex, Mater. Sci. Technol., 2006, 22(9), p 1098–1104.

    Article  Google Scholar 

  14. K. Shinohara, T. Seo, and K. Kumada, Recrystailization and Sigma Phase Formation as Concurrent and Interacting Phenomena in 25%Cr-20%Ni Steel, Mater. Trans., 1979, 20(12), p 713–723.

    CAS  Google Scholar 

  15. A.F. Padilha, R.L. Plaut, P.R. Rios, and G.E. Totten (ed.), Stainless steels heat treatment (chapter 12), in Steel Heat Treatment Handbook, 2nd edn. (CRC Press, Boca Raton, 2007), p. 695–739.

  16. F.B. Waanders, S.W. Vorster, and H. Pollak, The Influence of Temperature on σ-Phase Formation and the Resulting Hardening of Fe-Cr-Mo-Alloys, Hyperfine Interact., 1999, 120–121(1–8), p 751–755.

    Article  Google Scholar 

  17. J.T. Gow and O.E. Harder, Balancing the Composition of Cast 25 Per Cent Chromium-12 Per Cent Nickel Type Alloys, Trans. Am. Soc. Met., 1942, 30, p 855–935.

    CAS  Google Scholar 

  18. L.R. Woodyatt, Austenitic Stainless Steels: Microstructure and Mechanical Properties, 1st ed. Springer, London, 1984.

    Google Scholar 

  19. S. Konosu, H. Mashiba, M. Takeshima, and T. Ohtsuka, Effects of Pretest Aging on Creep Crack Growth Properties of Type 308 Austenitic Stainless Steel Weld Metals, Eng. Fail. Anal., 2001, 8(1), p 75–85.

    Article  CAS  Google Scholar 

  20. M.C. Mataya and M.J. Carr, Characterization of inhomogeneities in complex austenitic stainless steel forgings, in Deformation, Processing, and Structure, ASM Materials Science Seminar (St. Louis, 1982).

  21. G.S. Reis, A.M. Jorge, and O. Balancin, Influence of the Microstructure of Duplex Stainless Steels on Their Failure Characteristics during Hot Deformation, Mater. Res., 2000, 3, p 31–35.

    Article  CAS  Google Scholar 

  22. N. Lopez, M. Cid, and M. Puiggali, Influence of σ-Phase on Mechanical Properties and Corrosion Resistance of Duplex Stainless Steels, Corros. Sci., 1999, 41(8), p 1615–1631.

    Article  CAS  Google Scholar 

  23. V. Anil Kumar, R.K. Gupta, M.K. Karthikeyan, F. Gino Prakash, and P. Ramkumar, Development of High Nitrogen Stainless Steel for Cryogenic Applications, Mater. Sci. Forum, 2015, 830–831, p 23–26.

    Article  Google Scholar 

  24. J.W. Simmons, Overview: High-Nitrogen Alloying of Stainless Steels, Mater. Sci. Eng. A, 1996, 207, p 159–169.

    Article  Google Scholar 

  25. M.O. Speidel, Properties and applications of high nitrogen steels, in HNS 88, Lille, France, May 1988, ed. by J. Foct, A. Hendry (The Institute of Metals, London, 1989), p. 92.

  26. J. Srinath, K. Manwatkar Sushant, S.V.S. Narayana Murty, P. Ramesh Narayanan, S.C. Sharma and M. George Koshy, Metallurgical Analysis of a Failed 17–4 PH Stainless Steel Pyro Bolt Used in Launch Vehicle Separation Systems, Mater. Perform. Charact., 2015, 4(1), p 29–44.

    CAS  Google Scholar 

  27. ASTM E23-12C: Standard Test Methods for Notched Bar Impact Testing of Metallic Materials (ASTM International, West Conshohocken, 2007). www.astm.org.

  28. T.V. Rajan, C.P. Sharma, and A. Sharma, Heat Treatment-Principles and Techniques, Prentice-Hall of India, 1994.

    Google Scholar 

  29. R.J. Gray, V.K. Sikka, and R.T. King, Detecting Transformation of Delta-Ferrite to Sigma Phase in Stainless Steels by Advanced Metallographic Techniques, J. Met., 1978, 30(11), p 18–26.

    CAS  Google Scholar 

  30. C.C. Hsieh, The Study of δ/σ/γ Phase Transformation in 309LSÍ Stainless Steels After Aging under Nitrogen Atmospheres. M.S. thesis, I-Shou University, Taiwan, 2004.

  31. X. Tang, Sigma Phase Characterization in AISI 316 Stainless Steel, Microsc. Microanal., 2005, 11(2), p 78–79.

    Google Scholar 

  32. D.M.E. Villanueva, F.C.P. Junior, R.L. Plaut, and A.F. Padilha, Comparative Study on Sigma Phase Precipitation of Three Types of Stainless Steels: Austenitic, Superferritic and Duplex, Mater. Sci. Technol., 2006, 22(9), p 1098–1104.

    Article  CAS  Google Scholar 

  33. P.V. Muterlle, M. Zendron, and M. Perina, A. Molinari, Influence of delta ferrite on mechanical properties of Stainless steel produced by MIM, in Proceedings of COBEM 2009, 20th International Congress of Mechanical Engineering November 15–20, 2009.

  34. R. Ghasemi, B. Beidokhti, and M. Fazel-Najafabadi, Effect of Delta Ferrite on the Mechanical Properties of Dissimilar Ferritic-Austeniticstainless Steel Welds, Arch. Metall. Mater., 2018, 63(1), p 437–443.

    CAS  Google Scholar 

  35. S.A. Bashu, K. Singh, and M.S. Rawat, Effect of Heat Treatment on Mechanical Properties and Fracture Behaviour of a 12CrMoV Steel, Mater. Sci. Eng. A, 1990, 127, p 7–15.

    Article  Google Scholar 

  36. D. Carrouge, H.K.D.H. Bhadeshia, and P. Woollin, Effect of δ-Ferrite on Impact Properties of Supermartensitic Stainless Steel Heat Affected Zones, Sci. Technol. Weld. Join., 2004, 9, p 377–389.

    Article  CAS  Google Scholar 

  37. P. Wang, S.P. Lu, N.M. Xiao, D.Z. Li, and Y.Y. Li, Effect of Delta Ferrite on Impact Properties of Low Carbon 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Eng. A, 2010, 527, p 3210–3216.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the Group Director (VSSC), MMG, Deputy Director (VSSC), MME and Director of Vikram Sarabhai Space Centre (VSSC) for granting permission to publish this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ranjith.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjith, R., Rao, G.S., Manwatkar, S.K. et al. Effect of Heat Treatment on Mechanical Properties of AISI 202 Steel at Room Temperature and 77 K. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08332-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08332-3

Keywords

Navigation