Skip to main content
Log in

Influence of Tempering Time on the Microstructure and Mechanical Properties of AISI M42 High-Speed Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

AISI M42 high-speed steel is prone to fracture as a result of its brittle martensitic microstructure together with abundant carbides located at the grain boundaries. In this study, a series of property tests including hardness, impact toughness, and wear loss were performed to study the effect of tempering conditions on the mechanical properties of AISI M42 high-speed steel over holding time ranging from 1 to 20 hours. The effects of the tempering time on the characteristics and growth of carbides were also investigated. The results indicated that carbides in the experimental steels were obviously coarsened when the tempering time exceeded 4 hours. The dimension of the carbides increased, while the volume fraction decreased with the increasing tempering time, and the grain sizes were significantly augmented due to the reducing of small carbides. Moreover, the dislocation density decreased with the increasing tempering time, which led to the reducing of the yield stress of high-speed steel. An appropriate holding time (4 hours) resulted in fine-scale secondary carbides and a smaller grain size, which efficiently improved the impact toughness and wear resistance simultaneously. Nevertheless, a prolonged tempering time (> 4 hours) promoted the coarsening and coalescence of carbides, which were detrimental to the impact toughness and wear resistance. Consequently, the formation of fine-scale secondary carbides is the major influential factor to improve both the wear resistance and impact toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Y.L. Ji, W. Zhang, X.Y. Chen and J.G. Li: Acta Metall. Sin, (Engl. Lett.), 2016, vol. 29, pp. 382-387.

    Article  CAS  Google Scholar 

  2. L.P. Ma, W.X. Zhao, Z.Q. Liang, X.B. Wang, L.J. Xie, L. Jiao and T.F Zhou: Mater. Sci. Eng. A, 2014, vol. 609, pp. 16-25.

    Article  CAS  Google Scholar 

  3. S.Z. Wei, J.H. Zhu and L.J. Xu: Mater. Sci. Eng. A, 2005, vol. 404, pp. 138-145.

    Article  Google Scholar 

  4. L.Z. Wu: Adv. Steels, 2011, Vol. 335, pp. 453-461.

    Article  Google Scholar 

  5. Y.K. Deng, J.R. Chen and S.Z. Wang: High Speed Tool Steel, Metallurgical Industry Press, Beijing, China, 2002, pp. 225-234.

    Google Scholar 

  6. R. Colaco, E. Gordo, E.M. Ruiz-Navas, M. Otasevic and R. Vilar: Wear, 2006, vol. 260, pp. 949-956.

    Article  CAS  Google Scholar 

  7. D. Bombac, M. Tercelj, M. Fazarinc and G. Kugler: Mater. Sci. Eng. A, 2017, vol. 703, pp. 438-450.

    Article  CAS  Google Scholar 

  8. C.K. Kim, J.I. Park, S. Lee, Y.C. Kim, N.J. Kim and J.S. Yang: Metall. Mater. Trans. A, 2005, vol. 36, pp. 87-97.

    Article  Google Scholar 

  9. A.S. Chaus: Phys. Met. Metallogr., 2008, vol. 106, pp. 82-89.

    Article  Google Scholar 

  10. H.K. Moon, K.B. Lee and H. Kwon: Mater. Sci. Eng. A, 2008, vol. 474, pp. 328-334.

    Article  Google Scholar 

  11. A.S. Chaus, M. Bogachik and P. Uradnik: Phys. Met. Metallogr., 2011, vol. 112, pp. 470-479.

    Article  Google Scholar 

  12. Y.W. Luo, H.J. Guo, X.L. Sun, M.T. Mao and J. Guo: Metals, 2017, vol. 7, pp. 27-40.

    Article  Google Scholar 

  13. J. Guo, H.W. Qu, L.G. Liu, Y.L. Sun, Y. Zhang and Q.X. Yang: Int. J. Min. Met. Mater., 2013, vol. 20, pp. 146-151.

    Article  CAS  Google Scholar 

  14. M.J. Wang, Y. Wang and F.F. Sun: Mater. Sci. Eng. A, 2006, vol. 438-440, pp. 1139-1142.

    Article  Google Scholar 

  15. S. Priming and H. Leitner: Thermochim. Acta, 2011, vol. 526, pp. 111-117.

    Article  Google Scholar 

  16. T. Furuhara, K. Kobayashi and T. Maki: ISIJ Int., 2004, vol. 44, pp. 1937-1944.

    Article  CAS  Google Scholar 

  17. S. Sackl, M. Zuber, H. Clemens and S. Primig: Metall. Mater. Trans. A, 2016, vol. 47, pp. 3694-3702.

    Article  CAS  Google Scholar 

  18. G.Q. Zhang, H. Yuan, D.L. Jiao, Z. Li, Y. Zhang and Z.W. Liu: Mater. Sci. Eng. A, 2012, vol. 558, pp. 566-571.

    Article  CAS  Google Scholar 

  19. H. Chen, D. Zhao, Q.L. Wang, Y.H. Qiang and J.W. Qi: Friction, 2017, Vol. 18, pp. 1-8.

    Google Scholar 

  20. V. Trabadelo, S. Gimenez and I. Iturriza: Mater. Sci. Eng. A, 2009, vol. 499, pp. 360-367.

    Article  Google Scholar 

  21. Y.J. Kang, J.C. Oh, H.C. Lee and S. Lee: Metall. Mater. Trans. A, 2001, vol. 32, pp. 2515-2525.

    Article  Google Scholar 

  22. V.A. Snyder, N. Akaiwa, J. Alkemper and P.W. Voorhees: Metall. Mater. Trans. A, 1999, vol. 30, pp. 2341-2348.

    Article  Google Scholar 

  23. M. Petersen, A. Zangwill and C. Ratsch: Surf. Sci. 2003, vol. 536, pp. 55-60.

    Article  CAS  Google Scholar 

  24. A. Baldan: J. Mater. Sci., 2002, vol. 37, pp. 2171-2202.

    Article  CAS  Google Scholar 

  25. I.M. Lifshitz and V.V. Slyozov: J. Phys. Chem. Solids, 1961, vol. 19, pp. 35-50.

    Article  Google Scholar 

  26. C. Wagner: Z. Elektrochem., 1961, vol. 65, pp. 581-91.

    CAS  Google Scholar 

  27. A.J. Ardell: Acta Met. 1972, vol. 20, pp. 61-71.

    Article  Google Scholar 

  28. D.N. Zou, Y. Han, W. Zhang and X.D. Fang: J. Iron Steel Res. Int., 2010, vol. 17, pp. 50-54.

    Article  CAS  Google Scholar 

  29. M. Sauzay, B. Fournier, M. Mottot, A. Pineau and I. Monnet: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 410-414.

    Article  Google Scholar 

  30. W.Y. Yang and W.J. Qiang: Mechanical Behavior of Materials, Chemical Industry Press, Beijing, China, 2009, pp. 212-217.

    Google Scholar 

  31. B.B. He, B. Hu, H.W. Yen, G.J. Chen, Z.K. Wang, H.W. Luo and M.X. Huang: Science, 2017, vol. 357, pp. 1029-1032.

    Article  CAS  Google Scholar 

  32. L.J. Xu, J.D. Xing, S.Z. Wei, Y.Z. Zhang and R. Long: Mater. Sci. Eng. A, 2006, vol. 434, pp. 63-70.

    Article  Google Scholar 

  33. K.C. Hwang, S. Lee and H.C. Lee: Mater. Sci. Eng. A, 1998, vol. 254, pp. 296-304.

    Article  Google Scholar 

  34. J.W. Park, H.C. Lee and S. Lee: Metall. Mater. Trans. A, 1999, vol. 30, pp. 399-409.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports received from the National Natural Science Foundation of China (Grant No. U1560203), and the experimental supports provided by the Central Iron & Steel Research Institute (CISRI). The helpful comments, suggestions, and encouragement from editors and anonymous reviewers are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Han-Jie Guo.

Additional information

Manuscript submitted March 5, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, YW., Guo, HJ., Sun, XL. et al. Influence of Tempering Time on the Microstructure and Mechanical Properties of AISI M42 High-Speed Steel. Metall Mater Trans A 49, 5976–5986 (2018). https://doi.org/10.1007/s11661-018-4924-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-018-4924-5

Navigation