Skip to main content
Log in

Investigation of Tensile and Flexural Property of 316L Stainless Steel-Coated Polylactic Acid Parts

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Additive manufacturing (AM) has emerged as a globally adopted, powerful tool of manufacturing over traditional manufacturing techniques owing to its part customization characteristics, ability to create complex shapes, waste minimization, design flexibility, etc. Among the distinct AM techniques, fused deposition modeling (FDM) has increased in widespread popularity among researchers or engineers working in the area of biomedical (orthopedic implants), material science application, and new product development owing to its simplicity, versatility of material usage, and cost-effectiveness as compared to other additive manufacturing methods. In the present investigation, 18 samples of PLA material (9 for tensile and 9 for flexural test) were printed on FDM 3D printer based on Taguchi’s L-9 orthogonal array at different parameters. Further, these samples were coated with 316L stainless steel using a low-cost electric spray method. Thereafter, the coated samples were tested for tensile and flexural strength using the universal testing machine. Finally, the optimal combinations of the parameters were selected using the analysis of variance of the signal-to-noise ratio. The results showed that at optimum parameters (A1B2C2: raster angle 30°, number of top and bottom layer 3, and coating thickness of 100 µm) maximum tensile strength (29.51 MPa) and flexural strength (98 MPa) were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. M. Jiménez, L. Romero, I.A. Dom-nguez, M.M. Espinosa, and M. Dom-nguez, Additive Manufacturing Technologies: An Overview about 3D Printing Methods and Future Prospects, Complexity, 2019, 2, p 1–30. https://doi.org/10.1155/2019/9656938

    Article  Google Scholar 

  2. I. Karakurt and L. Lin, 3d Printing Technologies: Techniques, Materials, and Post-Processing, Curr. Opin. Chem. Eng., 2020, 28, p 134–143. https://doi.org/10.1016/j.coche.2020.04.001

    Article  Google Scholar 

  3. G.N. Levy, R. Schindel, and J.P. Kruth, Rapid Manufacturing and Rapid Tooling with Layer Manufacturing (LM) Technologies, State of the Art and Future Prospective, CIRP Ann., 2003, 52(2), p 589–609. https://doi.org/10.1016/S0007-8506(07)60206-6

    Article  Google Scholar 

  4. C.K. Chua, K.F. Leong, and J. An, Introduction to Rapid Prototyping of Biomaterials, Woodhead Publishing, Cambridge, 2014.

    Book  Google Scholar 

  5. R. Kumar, M. Kumar, and J.S. Chohan, Material-Specific Properties and Applications of Additive Manufacturing Techniques: A Comprehensive Review, Bull. Mater. Sci., 2021, 44(181), p 1–19. https://doi.org/10.1007/s12034-021-02364-y

    Article  CAS  Google Scholar 

  6. T. Pereira, J.B.V. Kennedy, and J. Potgieter, A Comparison of Traditional Manufacturing Vs Additive Manufacturing, the Best Method for the Job, Proc. Manuf., 2019 https://doi.org/10.1016/j.promfg.2019.02.003

    Article  Google Scholar 

  7. B. Subramanyam, T.V. Vineeta, P. Garre, V.V.S. Nikhil Bharadwaj, and P. Shiva Shashank, Comparative Analysis of Additive Manufacturing over Conventional Manufacturing, IOP Conf. Ser. Mater. Sci. Eng., 2018, 455, p 1–12. https://doi.org/10.1088/1757-899X/455/1/012102

    Article  Google Scholar 

  8. R. Kumar, M. Kumar, and J.S. Chohan, The Role of Additive Manufacturing for Biomedical Applications, A Crit. Rev. J. Manuf. Process, 2021, 64, p 828–850. https://doi.org/10.1016/j.jmapro.2021.02.022

    Article  Google Scholar 

  9. J.Q. Maliki and A.J.Q. Maliki, The Processes and Technologies of 3D Printing, Int. J. Adv. Comput. Sci. Technol., 2015, 4(10), p 161–165.

    Google Scholar 

  10. What are the Advantages and Disadvantages of 3d Printing? Available at: https://www.twi-global.com/technical-knowledge/faqs/what-is-3d-printing/pros-and-cons.

  11. K. Kun, Reconstruction and Development of a 3D Printer using FDM Technology, Proc. Eng., 2016, 149, p 203–211. https://doi.org/10.1016/j.proeng.2016.06.657

    Article  Google Scholar 

  12. T.D. Ngo, A. Kashani, G. Imbalzano, K.T.Q. Nguyen, and D. Hui, Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges, Compos. B Eng., 2018, 143, p 172–196. https://doi.org/10.1016/j.compositesb.2018.02.012

    Article  CAS  Google Scholar 

  13. J.S. Chohan and R. Singh, Pre and Post Processing Techniques to Improve Surface Characteristics of FDM Parts: A State of Art Review and Future Applications, Rapid Prototyp. J., 2017, 23(3), p 495–513. https://doi.org/10.1108/RPJ-05-2015-0059

    Article  Google Scholar 

  14. B. Li, J. Liu, H. Gu, J. Jiang, J. Zhang, and J. Yang, Structural Design of FDM 3D Printer for Low-Melting Alloy, IOP Conf. Ser. Mater. Sci. Eng., 2019, 592, p 1–8. https://doi.org/10.1088/1757-899X/592/1/012141

    Article  Google Scholar 

  15. K.S. Boparai, R. Singh, and H. Singh, Development of Rapid Tooling using Fused Deposition Modeling: A Review, Rapid Prototyp. J., 2015, 22(22), p 281–299. https://doi.org/10.1108/RPJ-04-2014-0048

    Article  Google Scholar 

  16. J.S. Chohan, R. Singh, K.S. Boparai, R. Penna, and F. Fraternali, Dimensional Accuracy Analysis of Coupled Fused Deposition Modeling and Vapour Smoothing Operations for Biomedical Applications, Compos. B Eng., 2017, 117, p 138–149.

    Article  CAS  Google Scholar 

  17. R.A. Ilyas, S.M. Sapuan, M.M. Harussani et al., Polylactic Acid(PLA) Biocomposite: Processing, Addit. Manuf. Adv. Appl. Polym., 2021, 13(1326), p 1–34. https://doi.org/10.3390/polym13081326

    Article  CAS  Google Scholar 

  18. A. Södergård and M. Stolt, Industrial Production of High Molecular Weight Poly(Lactic Acid), Wiley, Hoboken, 2010.

    Book  Google Scholar 

  19. Y. Song, Y. Li, W. Song et al., Measurements of the Mechanical Response of Unidirectional 3D-Printed PLA, Mater. Des., 2017, 122, p 154–164.

    Article  Google Scholar 

  20. J. Torres, M. Cole, A. Owji, Z. DeMastry, and A.P. Gordon, An Approach for Mechanical Property Optimization of Fused Deposition Modeling With Polylactic Acid Via Design of Experiments, Rapid Prototyp. J., 2016, 22(2), p 387–404. https://doi.org/10.1108/RPJ-07-2014-0083

    Article  Google Scholar 

  21. H. Dodziuk, Applications of 3D Printing in Healthcare, Kardiochir. Torakochirurgia Pol., 2016, 13(3), p 283–293. https://doi.org/10.5114/kitp.2016.62625

    Article  PubMed  PubMed Central  Google Scholar 

  22. M. Kumar, S. Kant, and S. Kumar, Corrosion Behavior of Wire Arc Sprayed Ni-Based Coatings in Extreme Environment, Mater. Res. Exp., 2019, 6(10), p 1–12. https://doi.org/10.1088/2053-1591/ab3bd8

    Article  CAS  Google Scholar 

  23. S. Kumar, A. Handa, V. Chawla, N.K. Grover et al., Performance of Thermal-Sprayed Coatings to Combat Hot Corrosion of Coal-Fired Boiler Tube and Effect of Process Parameters and Post-Coating Heat Treatment on Coating Performance: A Review, Surf. Eng., 2021, 37, p 833–860. https://doi.org/10.1080/02670844.2021.1924506

    Article  CAS  Google Scholar 

  24. H. Che, X. Chu, P. Vo, and S. Yue, Metallization of Various Polymers by Cold Spray, J. Therm. Spray Tech., 2018, 27, p 169–178. https://doi.org/10.1007/s11666-017-0663-1

    Article  CAS  Google Scholar 

  25. A. Sova, S. Grigoriev, A. Okunkova et al., Cold Spray Deposition of 316L Stainless Steel Coatings on Aluminium Surface With Following Laser Posttreatment, Surf. Coat. Technol., 2013, 235, p 1–35. https://doi.org/10.1016/j.surfcoat.2013.07.052

    Article  CAS  Google Scholar 

  26. A. Anitha, S. Arunachalam, and P. Radhakrishnan, Critical Parameters Influencing the Quality of Prototypes in Fused Deposition Modelling, J. Mater. Process. Technol., 2021, 118, p 385–388. https://doi.org/10.1016/S0924-0136(01)00980-3

    Article  Google Scholar 

  27. S. Bm, R. Malik, and S.S. Mahapatra, Effect of External Perimeter on Flexural Strength of FDM Build Parts, Arab. J. Sci. Eng., 2017, 42, p 4587–4595. https://doi.org/10.1007/s13369-017-2598-8

    Article  Google Scholar 

  28. O. Luzanin, V. Guduric, I.S. Ristic et al., Investigating impact of five build parameters on the maximum flexural force in FDM specimens—a definitive screening design approach, Rapid Prototyp. J., 2017, 23, p 1088–1098. https://doi.org/10.1108/RPJ-09-2015-0116

    Article  Google Scholar 

  29. K.P. Motaparti, G. Taylor, M.C. Leu et al., Experimental investigation of effects of build parameters on flexural properties in fused deposition modelling parts, Virtual Phys. Prototyp., 2017, 12, p 207–220. https://doi.org/10.1080/17452759.2017.1314117

    Article  Google Scholar 

  30. K.M. Rahman, T. Letcher, R. Reese, Mechanical Properties of Additively Manufactured PEEK Components Using Fused Filament Fabrication. In: Proceeding of the ASME International Mechanical Engineering Congress and Exposition (IMECE2015). Hosuton, Texas, 2015, pp. 13–19. https://doi.org/10.1115/IMECE2015-52209.

  31. O.A. Mohamed, S.H. Masood, and J.L. Bhowmik, Investigation on the Flexural Creep Stiffness Behavior of PC–ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design, J. Miner. Met. Mater. Soc., 2017, 69, p 498–505. https://doi.org/10.1007/s11837-016-2228-z

    Article  CAS  Google Scholar 

  32. A. Garg, A. Bhattacharya, and A. Batish, Failure Investigation of Fused Deposition Modelling Parts Fabricated at Different Raster Angles Under Tensile and Flexural Loading, Proc. Inst. Mech. Eng. Part B J. Eng. Manuf., 2017, 231, p 2031–2039. https://doi.org/10.1177/0954405415617447

    Article  CAS  Google Scholar 

  33. J. Adhikari, P. Saha, and A. Sinha, Surface Modification of Metallic Bone Implants—Polymer and Polymer-Assisted Coating for Bone in-Growth, Fundam. Biomater. Met., 2018 https://doi.org/10.1016/B978-0-08-102205-4.00014-3

    Article  Google Scholar 

  34. M. Bahraminasab, B.B. Sahari, K.L. Edwards, F. Farahmand, and M. Arumugam, Aseptic loosening of Femoral Components, Mater. Eng. Des. Consider., 2013, 44, p 155–163. https://doi.org/10.1016/j.matdes.2012.07.066

    Article  CAS  Google Scholar 

  35. R. Melentiev, N. Yu, and G. Lubineau, Polymer Metallization via Cold Spray Additive Manufacturing: A Review of Process Control Coating Qualities, and Prospective Applications, Addit. Manuf., 2021, 48, p 1–27. https://doi.org/10.1016/j.addma.2021.102459

    Article  CAS  Google Scholar 

  36. A.A. Ferreira, F.J.G. Silva, A.G. Pinto, and V.F.C. Sousa, Characterization of Thin Chromium Coatings Produced by PVD Sputtering for Optical Applications, Coatings, 2021, 11, p 1–20. https://doi.org/10.3390/coatings11020215

    Article  CAS  Google Scholar 

  37. E. Petrovicova and L.S. Schadler, Thermal Spraying of Polymers, Thermal spraying of polymers, Int. Mater. Rev., 2002, 47(4), p 169–190. https://doi.org/10.1179/095066002225006566

    Article  Google Scholar 

  38. D. Giraud, F. Borit, V. Guipont, and M. Jeandin, Metallization of a Polymer Using Cold Spray: Application to Aluminum Coating of Polyamide, ASM International, Almere, 2012.

    Google Scholar 

  39. W. Pivsa-Art, A. Chaiyasat, S. Pivsa-Art, H. Yamanec, and H. Oharac, Preparation of Polymer Blends Between Poly(lactic acid) and Poly(butylene adipate-co-terephthalate) and Biodegradable Polymers as Compatibilizers, Energy Procedia, 2013, 34, p 549–554.

    Article  CAS  Google Scholar 

  40. Z.Z. Abdullah, H.Y. Ting, M.A.M. Ali, M.H.F.M. Fauadi, M.S. Kasim et al., The Effect of Layer Thickness and Raster Angles on Tensile Strength and Flexural Strength for Fused Deposition Modeling (FDM) Parts, J. Adv. Manuf. Technol., 2017, 25, p 147–158.

    Google Scholar 

  41. R. Kumar, J.S. Chohan, R. Kumar, A. Yadav et al., Metal Spray Layered Hybrid Additive Manufacturing of PLA Composite Structures: Mechanical, Thermal and Morphological Properties, J. Thermoplast. Compos. Mater., 2020 https://doi.org/10.1177/0892705720932622

    Article  Google Scholar 

  42. A.K. Sood, R.K. Ohdar, and S.S. Mahapatra, Parametric Appraisal of Mechanical Property of Fused Deposition Modelling Processed Parts, Mater. Des., 2010, 31(1), p 287–295. https://doi.org/10.1016/j.matdes.2009.06.016

    Article  CAS  Google Scholar 

  43. S. Kumar, M. Kumar, and A. Handa, Comparative Study of High Temperature Oxidation Behavior of Wire Arc Sprayed Ni-Cr and Ni-Al Coatings, Eng. Fail. Anal., 2019, 106, p 104173–104189.

    Article  CAS  Google Scholar 

  44. S. Kumar, M. Kumar, and A. Handa, Combating Hot Corrosion of Boiler Tubes—A Study, Eng. Fail. Anal., 2018, 94, p 379–395. https://doi.org/10.1016/j.engfailanal.2018.08.004

    Article  CAS  Google Scholar 

  45. S. Kumar, M. Kumar, and A. Handa, Erosion Corrosion Behavior and Mechanical Property of Wire Arc Sprayed Ni-Cr and Ni-Al Coating on Boiler Steels in Actual Boiler Environment, Mater. High Temp., 2020, 37(6), p 370–384. https://doi.org/10.1080/09603409.2020.1810922

    Article  CAS  Google Scholar 

  46. S. Kumar, M. Kumar, and A. Handa, High Temperature Oxidation and Erosion-Corrosion Behaviour of Wire Arc Sprayed Ni-Cr Coating on Boiler Steel, Mater. Res. Exp., 2019, 6, p 125533. https://doi.org/10.1088/2053-1591/ab5fae

    Article  CAS  Google Scholar 

  47. S. Kumar, A. Handa, and R. Kumar, Overview of Wire Arc Spray Process: A Review, J. Compos. Theory, 2019, 12(7), p 900–907.

    Google Scholar 

  48. S. Kumar and R. Kumar, Influence of Processing Conditions on the Properties of Thermal Sprayed Coating: A Review, Surf. Eng., 2021, 37(11), p 1339–1372. https://doi.org/10.1080/02670844.2021.1967024

    Article  CAS  Google Scholar 

  49. V. Sharma, S. Kumar, M. Kumar, and D. Deepak, High Temperature Oxidation Performance of Ni-Cr-Ti and Ni-5Al Coatings, Mater. Today Proc., 2020, 26(3), p 3397–3406. https://doi.org/10.1016/j.matpr.2019.11.048

    Article  CAS  Google Scholar 

  50. R. Kumar and S. Kumar, Thermal Spray Coating Process: A Study, Int. J. Eng. Sci. Res. Technol., 2018, 7(3), p 610–617. https://doi.org/10.5281/zenodo.1207005

    Article  CAS  Google Scholar 

  51. S. Deshpande, A. Kulkarni, S. Sampath, and H. Herman, Application of image analysis for characterization of porosity in thermal spray coatings and correlation with small angle neutron scattering, Surf. Coat. Technol., 2004, 187(1), p 6–16. https://doi.org/10.1016/j.surfcoat.2004.01.032

    Article  CAS  Google Scholar 

  52. P. Guo, S. Ma, M. Jiao, P. Lv, J. Xing, L. Xu, and Z. Huang, Effect of Chromium on Microstructure and Oxidation Wear Behavior of High-Boron High-Speed Steel at Elevated Temperatures, Materials, 2022, 15, p 3–16. https://doi.org/10.3390/ma15020557

    Article  CAS  Google Scholar 

  53. S.R. Rajpurohit and H.K. Dave, Flexural Strength of Fused Filament Fabricated (FFF) PLA Parts on an Open-Source 3D Printer, Adv. Manuf., 2018, 6, p 430–441.

    Article  CAS  Google Scholar 

  54. R.K. Roy, A Primer on the Taguchi Method, 2nd ed. Society of Manufacturing Engineers, Southfield, 2010.

    Google Scholar 

  55. C.M.S. Vicente, T.S. Martins, M. Leite et al., Influence of Fused Deposition Modeling Parameters on the Mechanical Properties of ABS parts, Polym. Adv. Technol., 2019, 31, p 1–7. https://doi.org/10.1002/pat.4787

    Article  CAS  Google Scholar 

  56. S.K. Panda, S. Padhee, A.K. Sood, and S.S. Mahapatra, Optimization of Fused Deposition Modelling (FDM) Process Parameters Using Bacterial Foraging Technique, Intell. Inf. Manag., 2009, 1(2), p 89–97. https://doi.org/10.4236/iim.2009.12014

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful to Chandigarh University (Punjab) and Auxein Medical Pvt Ltd. (Haryana) for offering the chance to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Kumar, M. & Chohan, J.S. Investigation of Tensile and Flexural Property of 316L Stainless Steel-Coated Polylactic Acid Parts. J. of Materi Eng and Perform 33, 3087–3100 (2024). https://doi.org/10.1007/s11665-023-08200-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08200-0

Keywords

Navigation