Skip to main content
Log in

Temperature Dependence of Elastic Properties of Al-Mg-Si Direct-Chill-Cast AA6111 Alloy at Near-Solidus Temperatures

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The elastic properties of the Al-Mg-Si direct-chill-cast AA6111 alloy were determined during the unloading stage of the cyclic tensile test over a wide range of temperatures (25-550 °C), and particular attention was paid to high temperatures near the solidus. Young’s modulus was calculated based on macroscopic and localized strains, which were measured using an extensometer and the digital image correlation (DIC) method. Poisson's ratio was determined based on the localized axial and lateral strains measured using DIC method. Over the entire temperature range, the DIC method demonstrated a higher stability in its accuracy with increasing temperature than that using the extensometer. A sharp change in the slope of Young's modulus as a function of the temperature, starting from the solidus temperature, was detected using the DIC method. Correlations between Young's modulus and temperature in both the solid and semi-solid states were established. Poisson’s ratio as a function of the temperature exhibited a dramatic change near the solidus temperature because of the presence of liquid pockets. The onset brittle temperature of AA6111 alloy in the semi-solid state was estimated to be 550 °C based on the critical values of Poisson’s ratio and the shear modulus to bulk modulus ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Sarkar, T.R.G. Kutty, D.S. Wilkinson, J.D. Embury, and D.J. Lloyd, Tensile Properties and Bendability of T4 Treated Aa6111 Aluminum Alloys, Mater. Sci. Eng. A., 2004, 369, p 258–266. https://doi.org/10.1016/j.msea.2003.11.022

    Article  CAS  Google Scholar 

  2. J.Y. Lee, M.G. Lee, F. Barlat, K.H. Chung, and D.J. Kim, Effect of Nonlinear Multi-Axial Elasticity and Anisotropic Plasticity on Quasi-Static Dent Properties of Automotive Steel Sheets, Int. J. Solids Struct., 2016, 87, p 254–266. https://doi.org/10.1016/j.ijsolstr.2016.01.020

    Article  Google Scholar 

  3. M. Jolly and L. Katgerman, Modelling of Defects in Aluminium Cast Products, Prog. Mater. Sci., 2022, 123, p 100824. https://doi.org/10.1016/j.pmatsci.2021.100824

    Article  CAS  Google Scholar 

  4. D. Zakarian, A. Khachatrian, and S. Firstov, Universal Temperature Dependence of Young’s Modulus, Met. Powder Rep., 2019, 74, p 204–206. https://doi.org/10.1016/j.mprp.2018.12.079

    Article  Google Scholar 

  5. H.Y. Yu, Variation of Elastic Modulus during Plastic Deformation and its Influence on Springback, Mater. Des., 2009, 30, p 846–850. https://doi.org/10.1016/j.matdes.2008.05.064

    Article  CAS  Google Scholar 

  6. S. Vitzthum, M. Eder, C. Hartmann, and W. Volk, Investigation on Strain Dependent Elastic Behavior for Accurate Springback Analysis, J. Phys. Conf. Ser., 2018, 1063, p 1–6. https://doi.org/10.1088/1742-6596/1063/1/012118

    Article  CAS  Google Scholar 

  7. P. van Liempt and J. Sietsma, A Physically Based Yield Criterion I. Determination of the Yield Stress Based on Analysis of Pre-Yield Dislocation Behaviour, Mater. Sci. Eng. A., 2016, 662, p 80–87. https://doi.org/10.1016/j.msea.2016.03.013

    Article  CAS  Google Scholar 

  8. Z. Chen, U. Gandhi, J. Lee, and R.H. Wagoner, Variation and Consistency of Young’s Modulus in Steel, J. Mater. Process. Technol., 2016, 227, p 227–243. https://doi.org/10.1016/j.jmatprotec.2015.08.024

    Article  CAS  Google Scholar 

  9. J. Mendiguren, F. Cortés, X. Gómez, and L. Galdos, Elastic Behaviour Characterisation of TRIP 700 Steel by Means of Loading-Unloading Tests, Mater. Sci. Eng. A, 2015, 634, p 147–152. https://doi.org/10.1016/j.msea.2015.03.050

    Article  CAS  Google Scholar 

  10. G. Zhu, C. Yang, G. Shen, Y. Peng, and B. Shi, The Asymmetric Pre-Yielding Behaviour during Tension and Compression for a Rolled AZ31 Mg Alloy, Int. J. Mater. Form., 2022, 15, p 1–12. https://doi.org/10.1007/s12289-022-01683-7

    Article  Google Scholar 

  11. S.J. Wu, P.C. Chin, and H. Liu, Measurement of Elastic Properties of Brittle Materials by Ultrasonic and Indentation Methods, Appl. Sci., 2019, 9, p 1–11. https://doi.org/10.3390/app9102067

    Article  CAS  Google Scholar 

  12. ASTM E111 2010: Standard Test Method for Young’s Modulus Tangent Modulus, and Chord Modulus, https://doi.org/10.1520/E0111-04R10.

  13. M. Quanjin, M.R.M. Rejab, Q. Halim, M.N.M. Merzuki, and M.A.H. Darus, Experimental Investigation of the Tensile Test using Digital Image Correlation (DIC) Method, Mater. Today Proc., 2020, 27, p 757–763. https://doi.org/10.1016/j.matpr.2019.12.072

    Article  CAS  Google Scholar 

  14. L. Yu and B. Pan, Overview of High-Temperature Deformation Measurement using Digital Image Correlation, Exp. Mech., 2021, 61, p 1121–1142. https://doi.org/10.1007/s11340-021-00723-8

    Article  Google Scholar 

  15. B. Pan, Recent Progress in Digital Image Correlation, Exp. Mech., 2011, 51, p 1223–1235. https://doi.org/10.1007/s11340-010-9418-3

    Article  Google Scholar 

  16. J. Rakhmonov, M. Qassem, D. Larouche, K. Liu, M. Javidani, X.-G. Chen, and J. Colbert, A New Approach to Determine Tensile Stress-Strain Evolution in Semi-Solid State at Near-Solidus Temperature of Aluminum Alloys, Metals (Basel), 2021, 11, p 396. https://doi.org/10.3390/met11030396

    Article  CAS  Google Scholar 

  17. S.F. Pugh, Relations Between the Elastic Moduli and the Plastic Properties of Polycrystalline Pure Metals, Philos. Mag., 1954, 7, p 823–843.

    Article  Google Scholar 

  18. A.B. Phillion, S. Thompson, S.L. Cockcroft, and M.A. Wells, Tensile Properties of as-Cast Aluminum Alloys AA3104, AA6111 and CA31218 at above Solidus Temperatures, Mater. Sci. Eng. A, 2008, 497, p 388–394. https://doi.org/10.1016/j.msea.2008.07.027

    Article  CAS  Google Scholar 

  19. EN ISO 9513 : Metallic materials - Calibration of Extensometers Used in Uniaxial Testing, (2002).

  20. M. Qassem, M. Javidani, D. Larouche, J. Colbert, and X.-G. Chen, Effect of Chemical Composition on the Semisolid Tensile Properties and Hot Tearing Susceptibility of AA6111 DC Cast Alloys, J Mater Sci., 2022, 57, p 1–18. https://doi.org/10.1007/s10853-022-07960-9

    Article  CAS  Google Scholar 

  21. B. Koohbor, S. Ravindran, and A. Kidane, Experimental Determination of Representative Volume Element (RVE) Size in Woven Composites, Opt. Lasers Eng., 2017, 90, p 59–71. https://doi.org/10.1016/j.optlaseng.2016.10.001

    Article  Google Scholar 

  22. H. Qiu, R. Ueji, Y. Kimura, and T. Inoue, Heterogeneous Distribution of Microstrain Evolved during Tensile Deformation of Polycrystalline Plain Low Carbon Steel, Metals (Basel)., 2020, 10, p 1–11. https://doi.org/10.3390/met10060774

    Article  Google Scholar 

  23. L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton, The Effect of Iron Content on the Iron-Containing Intermetallic Phases in a Cast 6060 Aluminum Alloy, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42, p 1737–1749. https://doi.org/10.1007/s11661-010-0595-6

    Article  CAS  Google Scholar 

  24. S. Kumar, P.S. Grant, and K.A.Q. O’Reilly, Fe Bearing Intermetallic Phase Formation in a Wrought Al-Mg-Si Alloy, Trans. Indian Inst. Met., 2012, 65, p 553–557. https://doi.org/10.1007/s12666-012-0221-y

    Article  CAS  Google Scholar 

  25. H. Cline and D. Lee, Strengthening of Lamellar vs Equiaxed Ag-Cu Eutectic, Acta Metall., 1970, 18, p 315–323.

    Article  CAS  Google Scholar 

  26. W. Xu and L.P. Dávila, Size Dependence of Elastic Mechanical Properties of Nanocrystalline Aluminum, Mater. Sci. Eng. A., 2017, 692, p 90–94. https://doi.org/10.1016/j.msea.2017.03.065

    Article  CAS  Google Scholar 

  27. T. Sumitomo, C.H. Cáceres, and M. Veidt, The Elastic Modulus of Cast Mg-Al-Zn alloys, J. Light Met., 2002, 2, p 49–56. https://doi.org/10.1016/S1471-5317(02)00013-5

    Article  Google Scholar 

  28. D. Larouche, Computation of Solidification Paths in Multiphase Alloys with Back-Diffusion, Calphad Comput. Coupling Phase Diagrams Thermochem., 2007, 31, p 490–504. https://doi.org/10.1016/j.calphad.2007.04.002

    Article  CAS  Google Scholar 

  29. M. Radovic, M.W. Barsoum, T. El-Raghy, S.M. Wiederhorn, and W.E. Luecke, Effect of Temperature, Strain Rate and Grain Size on the Mechanical Response of Ti3SiC2 in Tension, Acta Mater., 2002, 50, p 1297–1306. https://doi.org/10.1016/S1359-6454(01)00424-4

    Article  CAS  Google Scholar 

  30. L.F. Mondolfo, Aluminum Alloys: Structure and Properties, Butterworths, London, Boston, 1979.

    Google Scholar 

  31. W. Köster and H. Franz, Poisson’s Ratio for Metals and Alloys, Metall. Rev., 1961, 6, p 1–56. https://doi.org/10.1179/mtlr.1961.6.1.1

    Article  Google Scholar 

  32. A. Graziani, M. Bocci, and F. Canestrari, Complex Poisson’s Ratio of Bituminous Mixtures: Measurement and Modeling, Mater. Struct., 2014, 47, p 1131–1148. https://doi.org/10.1617/s11527-013-0117-2

    Article  CAS  Google Scholar 

  33. A.P. Tarkov and V.V. Vavakin, Poisson’s Ratio Behaviour in Various Crystalline Rocks: Application to the Study of the Earth’s Interior, Phys. Earth Planet. Inter., 1982, 29, p 24–29. https://doi.org/10.1016/0031-9201(82)90134-0

    Article  CAS  Google Scholar 

  34. O.N. Senkov, M. Dubois, and J.J. Jonas, Elastic Moduli of Titanium-Hydrogen Alloys in the Temperature Range 20°C to 1100°C, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 1996, 27, p 3963–3970. https://doi.org/10.1007/BF02595645

    Article  Google Scholar 

  35. I. McEnteggart, Extensometer, in: W. Sharpe (Ed.), Exp. Solid Mech., 2008: pp. 335–346.

  36. H. Wang, P. Ge, S. Wu, B. Wang, Y. Wang, X. Kong, and Y. Pang, Improvement Method of High-Temperature Digital Image Correlation Measurement Accuracy Based on Image Processing, Meas. J. Int. Meas. Confed., 2022, 190, p 110723. https://doi.org/10.1016/j.measurement.2022.110723

    Article  Google Scholar 

  37. K. Tanaka and M. Koiwa, Elastic Properties of High-Temperature Intermetallics, High Temp. Mater. Process., 1999, 18, p 323–336.

    Article  CAS  Google Scholar 

  38. S. Saimoto, H. Sang, and L.R. Morris, Microplastic Bases for Constitutive Relations Found in Tensile Testing, Acta Metall., 1981, 29, p 215–228. https://doi.org/10.1016/0001-6160(81)90101-2

    Article  Google Scholar 

  39. S.A. El-Naaman, K.L. Nielsen, and C.F. Niordson, An Investigation of Back Stress Formulations under Cyclic Loading, Mech. Mater., 2019, 130, p 76–87. https://doi.org/10.1016/j.mechmat.2019.01.005

    Article  Google Scholar 

  40. M. Yang, Y. Pan, F. Yuan, Y. Zhu, and X. Wu, Back Stress Strengthening and Strain Hardening in Gradient Structure, Mater. Res. Lett., 2016, 4, p 145–151. https://doi.org/10.1080/21663831.2016.1153004

    Article  CAS  Google Scholar 

  41. C. Zener and J.H. Hollomon, Problems in Non-Elastic Deformation of Metals, J. Appl. Phys., 1946, 17, p 69–82. https://doi.org/10.1063/1.1707696

    Article  CAS  Google Scholar 

  42. J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. London. Ser. A. Math. Phys. Sci., 1957, 241, p 376–396. https://doi.org/10.1098/rspa.1957.0133

    Article  Google Scholar 

  43. R.W. Style, R. Boltyanskiy, B. Allen, K.E. Jensen, H.P. Foote, J.S. Wettlaufer, and E.R. Dufresne, Stiffening Solids with Liquid Inclusions, Nat. Phys., 2015, 11, p 82–87. https://doi.org/10.1038/nphys3181

    Article  CAS  Google Scholar 

  44. G.N. Greaves, A.L. Greer, R.S. Lakes, and T. Rouxel, Poisson’s Ratio and Modern Materials, Nat. Mater., 2011, 10, p 823–837. https://doi.org/10.1038/nmat3134

    Article  CAS  Google Scholar 

  45. R.M. Christensen, The Ductile/Brittle Transition, is it Well Posed and Determinable, Int. J. Eng. Sci., 2021, 158, p 103424. https://doi.org/10.1016/j.ijengsci.2020.103424

    Article  CAS  Google Scholar 

  46. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, Dover Publications, New York, 1944.

    Google Scholar 

  47. R.P. Thompson and W.J. Clegg, Predicting Whether a Material is Ductile or Brittle, Curr. Opin. Solid State Mater. Sci., 2018, 22, p 100–108. https://doi.org/10.1016/j.cossms.2018.04.001

    Article  CAS  Google Scholar 

  48. O.N. Senkov and D.B. Miracle, Generalization of Intrinsic Ductile-to-Brittle Criteria by Pugh and Pettifor for Materials with a Cubic Crystal Structure, Sci. Rep., 2021, 11, p 10–13. https://doi.org/10.1038/s41598-021-83953-z

    Article  CAS  Google Scholar 

  49. W.H. Suyitno and L.K. Kool, Hot Tearing Criteria Evaluation for Direct-Chill Casting of an Al-4.5 pct Cu alloy, Metall, Mater. Trans. A Phys. Metall. Mater. Sci., 2005, 36, p 1537–1546. https://doi.org/10.1007/s11661-005-0245-6

    Article  Google Scholar 

  50. Q.L. Bai, J.C. Liu, H.X. Li, Q. Du, L. Katgerman, J.S. Zhang, and L.Z. Zhuang, A Modified Hot Tearing Criterion for Direct Chill Casting of Aluminium Alloys, Mater. Sci. Technol. (United Kingdom), 2016, 32, p 846–854. https://doi.org/10.1080/02670836.2015.1104081

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support given by the Fonds de recherche du Québec—Nature et technologies (FRQNT) under Grant No. 2018-LU-252831 and the Mitacs Acceleration under Grant No. IT14722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X.-Grant Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qassem, M., Javidani, M., Larouche, D. et al. Temperature Dependence of Elastic Properties of Al-Mg-Si Direct-Chill-Cast AA6111 Alloy at Near-Solidus Temperatures. J. of Materi Eng and Perform 33, 987–998 (2024). https://doi.org/10.1007/s11665-023-08006-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-08006-0

Keywords

Navigation