Skip to main content
Log in

Numerical Study and Experimental Verification on Solidification Characteristics in Commercial Purity Aluminum under Mechanical Vibration

  • Technical Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The solidification characteristics of commercially pure aluminum with and without vibration were investigated using experiments and numerical simulation methods. The results showed that the vibration condition is beneficial to the filling flow. The changes of melt flow and temperature field were studied and compared with those obtained without a mechanical vibration field. The existence of the mechanical force causes the melt velocity to be accompanied by abrupt fluctuations at different positions of the melt. However, the ending time of vibration solidification is slightly longer than that without applying mechanical vibration field. The application of mechanical vibration significantly refines the grain size, thereby increasing tensile strength and elongation. With the increase in vibration frequency, the solidification structure of the alloy is refined and then coarsened. It is, therefore, found that the optimal mechanical vibration frequency is 30 Hz. The present study can provide guidance for engineering practice in the vibration field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. L. Lu, A.K. Dahle and D.H. StJohn, Grain Refinement Efficiency and Mechanism of Aluminium Carbide in Mg-Al alloys, Scripta Mater., 2005, 53(5), p 517–522.

    Article  CAS  Google Scholar 

  2. W. Jiang, Z. Fan, X. Chen, B. Wang and H. Wu, Combined Effects of Mechanical Vibration and Wall Thickness on Microstructure and Mechanical Properties of A356 Aluminum Alloy Produced by Expendable Pattern Shell Casting, Mater. Sci. Eng., A, 2014, 619, p 228–237.

    Article  CAS  Google Scholar 

  3. W. Jiang, Z. Fan, Y. Dai and C. Li, Effects of Rare Earth Elements Addition on Microstructures, Tensile Properties and Fractography of A357 Alloy, Mater. Sci. Eng., A, 2014, 597, p 237–244.

    Article  CAS  Google Scholar 

  4. K. Miwa, T. Tamura, M.J. Li, N. Omura and Y. Murakami, Effect of Vibration during Solidification to Obtain High Potential Metallic Materials, Mater. Sci. Forum, 2011, 690, p 162–165.

    Article  CAS  Google Scholar 

  5. D. Gao, Z. Li, Q. Han and Q. Zhai, Effect of Ultrasonic Power on Microstructure and Mechanical Properties of AZ91 Alloy, Mater. Sci. Eng., A, 2009, 502(1–2), p 2–5.

    Article  Google Scholar 

  6. K. Kocatepe, Effect of Low Frequency Vibration on Porosity of LM25 and LM6 Alloys, Mater. Des., 2007, 28(6), p 1767–1775.

    Article  CAS  Google Scholar 

  7. Z. Xu, J. Yan, W. Chen and S. Yang, Effect of Ultrasonic Vibration on the Grain Refinement and SiC Particle Distribution in Zn-Based Composite Filler Metal, Mater. Lett., 2008, 62(17–18), p 2615–2618.

    Article  CAS  Google Scholar 

  8. Y. Murakami, K. Miwa, M. Kito, T. Honda, N. Kanetake and S. Tada, Effects of Mechanical Vibration Factors on Size and Shape of Solid Particles in JIS AC4CH Aluminum Alloy Semi-Solid Slurry, Mater. Trans., 2016, 57(2), p 163–167.

    Article  CAS  Google Scholar 

  9. K. Kocatepe and C.F. Burdett, Effect of Low Frequency Vibration on Macro and Micro Structures of LM6 Alloys, J. Mater. Sci., 2000, 35(13), p 3327–3335.

    Article  CAS  Google Scholar 

  10. V. Chaturvedi and T. Talapaneni, Effect of Mechanical Vibration and Grain Refiner on Microstructure and Mechanical Properties of AZ91Mg Alloy during Solidification, J. Mater. Eng. Perform., 2021, 30(5), p 3187–3202.

    Article  CAS  Google Scholar 

  11. R.G. Guan, F.R. Cao, L.Q. Chen, J.P. Li and C. Wang, Dynamical Solidification Behaviors and Microstructural Evolution during Vibrating Wavelike Sloping Plate Process, J. Mater. Process. Technol., 2009, 209(5), p 2592–2601.

    Article  CAS  Google Scholar 

  12. W. Jiang, X. Chen, B. Wang, Z. Fan and H. Wu, Effects of Vibration Frequency on Microstructure, Mechanical Properties, and Fracture Behavior of A356 Aluminum Alloy Obtained by Expendable Pattern Shell Casting, Int. J. Adv. Manuf. Technol., 2016, 83(1), p 167–175.

    Article  Google Scholar 

  13. F. Taghavi, H. Saghafian and Y.H.K. Kharrazi, Study on the Effect of Prolonged Mechanical Vibration on the Grain Refinement and Density of A356 Aluminum Alloy, Mater. Des., 2009, 30(5), p 1604–1611.

    Article  CAS  Google Scholar 

  14. G. Chirita, I. Stefanescu, D. Soares and F.S. Silva, Influence of Vibration on the Solidification Behaviour and Tensile Properties of an Al–18wt%Si Alloy, Mater. Des., 2009, 30(5), p 1575–1580.

    Article  CAS  Google Scholar 

  15. Z.-K. Zheng, Y.-J. Ji, W.-M. Mao, R. Yue and Z.-Y. Liu, Influence of Rheo-Diecasting Processing Parameters on Microstructure and Mechanical Properties of Hypereutectic Al–30%Si Alloy, Trans. Nonferrous Met. Soc. China, 2017, 27(6), p 1264–1272.

    Article  CAS  Google Scholar 

  16. R.M. Pillai, K.S.B. Kumar and B.C. Pai, A Simple Inexpensive Technique for Enhancing Density and Mechanical Properties of AlSi Alloys, J. Mater. Process. Technol., 2004, 146(3), p 338–348.

    Article  CAS  Google Scholar 

  17. H.M. Guo, A.S. Zhang, X.J. Yang, M.M. Yan and Y. Ding, Microstructure Formation and Mechanical Properties of AZ31 Magnesium Alloy Solidified with a Novel Mechanical Vibration Technique, Metall. Mater. Trans. A., 2014, 45(1), p 438–446.

    Article  CAS  Google Scholar 

  18. Z. Fan, Y. Wang, M. Xia and S. Arumuganathar, Enhanced Heterogeneous Nucleation in AZ91D Alloy by Intensive Melt Shearing, Acta Mater., 2009, 57(16), p 4891–4901.

    Article  CAS  Google Scholar 

  19. W. Abdul-Karem, N. Green and K.F. Al-Raheem, Vibration-Assisted Filling Capability in Thin Wall Investment Casting, Int. J. Adv. Manuf. Technol., 2012, 61(9), p 873–887.

    Article  Google Scholar 

  20. M.T.A. Rasgado and K. Davey, Vibration and Casting Surface Finish, J. Mater. Process. Technol., 2004, 153–154, p 875–880.

    Article  Google Scholar 

  21. O. Kudryashova, M. Khmeleva, P. Danilov, V. Dammer, A. Vorozhtsov and D. Eskin, Optimizing the Conditions of Metal Solidification with Vibration, Metals, 2019, 9(3), p 366.

    Article  CAS  Google Scholar 

  22. N. Abu-Dheir, M. Khraisheh, K. Saito and A. Male, Silicon Morphology Modification in the Eutectic Al–Si Alloy using Mechanical Mold Vibration, Mater. Sci. Eng. A, 2005, 393(1–2), p 109–117.

    Article  Google Scholar 

  23. J.C. Jie, S.P. Yue, Z.L. Zheng, Z.K. Guo, T.J. Li, Investigation of Si Content on the Grain Refinement of Al-Si Alloy under Pulsed Magnetic field. IOP Conf. Ser. Mater. Sci. Eng. 424, (2018)

  24. S.P. Wu, R.J. Wang and W. Chen, Progress on Numerical Simulation of Vibration in the Metal Solidification, Acta Metall. Sinica, 2018, 54(2), p 247–264.

    CAS  Google Scholar 

  25. J.H. Fu, X. Miao, Q. Zuo, H.P. Tang, Y. Li, Y. Zhang, B. Sunden, Heat Transfer and Field Synergy Characteristics in a Rectangular Unit Channel Under Mechanical Vibration. Int. Commun. Heat Mass Transf. 136, (2022) (in English)

  26. X. Yan, F. Ling, W. Chen and M. Cai, The Temperature Field Analysis of the Implantable Medical Device Based on Fluid-Solid Coupling Conjugated Heat Transfer, Progr. Electromagn. Res. C, 2019, 96, p 259–271.

    Article  CAS  Google Scholar 

  27. J.C. Jie, S.P. Yue, J. Liu, D.H. St John, Y.B. Zhang, E.Y. Guo, T.M. Wang, T.J. Li, Revealing the mechanisms for the nucleation and formation of equiaxed grains in commercial purity aluminum by fluid-solid coupling induced by a pulsed magnetic field, Acta Materialia, 208, (2021)

Download references

Acknowledgments

The authors gratefully acknowledge the supports of the National Natural Science Foundation of China (Nos. 52071050, 51871041), National Key Research and Development Program of China (Nos. 2018YFE0306103, 2017YFB0306105), Fundamental Research Funds for the Central Universities of China (No. DUT21GF404).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Jie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Jie, J., Peng, B. et al. Numerical Study and Experimental Verification on Solidification Characteristics in Commercial Purity Aluminum under Mechanical Vibration. J. of Materi Eng and Perform 33, 475–482 (2024). https://doi.org/10.1007/s11665-023-07970-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-023-07970-x

Keywords

Navigation