Skip to main content
Log in

Effect of Ultrasonic Vibration on Compression Behavior and Microstructural Characteristics of Commercially Pure Aluminum

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The principle objective of this research is to investigate the modeling of compression behavior and microstructural evolution of pure aluminum in the ultrasonic-assisted compression test. A dislocation density-based constitutive model was developed based on the existing frameworks and calibrated using experimental data to predict the stress-strain response of pure aluminum during UAC tests. An experimental set-up was designed to work at resonance condition with frequency of around 20 kHz and variant longitudinal vibration amplitudes at the range of 0~20 μm. The verified model and experimental samples were used for parameter studies and the study of grain formation of aluminum after conventional and ultrasonic upsetting. Results showed that the developed constitutive model was able to predict compression behavior of aluminum suitably. An increase in the flow stress drop, residual flow stress, and dislocation density occurred when the applied vibration intensity was raised. In addition, it was observed that the more homogenous microstructure with nearly equiaxed grains and also the higher microhardness values can be achieved when ultrasonic vibration is imposed on samples during compression test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. A.E. Eaves, A.W. Smith, W.J. Waterhouse, and D.H. Sansome, Review of the Application of UltraSonic Vibrations to Deforming Metals, Ultrasonics, 1975, 7, p 162–170

    Article  Google Scholar 

  2. S.H. Baker and G.S. Carpenter, Dislocation Mobility and Motion Under Combined Stresses, J. Appl. Phys., 1967, 38(4), p 1586–1591

    Article  Google Scholar 

  3. H.O.K. Kirchner, W.K. Kromp, F.B. Prinz, and P. Trimmel, Plastic Deformation Under Simultaneous Cyclic and Unidirectional Loading at Low and Ultrasonic Frequencies, Mater. Sci. Eng., 1985, 68(2), p 197–206

    Article  Google Scholar 

  4. B. Langenecker, Effects of Ultrasound on Deformation Characteristics of Metals, IEEE Trans. Sonics Ultrason., 1966, SU-13(1), p 1–8

    Article  Google Scholar 

  5. G.A. Malygin, Acoustoplastic Effect and the Stress Superimposition Mechanism, Phys. Solid State, 2000, 42, p 72–78

    Article  Google Scholar 

  6. O. Izumi, K. Oyama, and Y. Suzuki, Effects of Superimposed Ultrasonic Vibration on Compressive Deformation of Metals, Trans. Jpn. Inst. Met., 1966, 7, p 162–166

    Article  Google Scholar 

  7. T. Ohgaku and N. Takeuchi, The Blaha Effect of Alkali Halide Crystals, Phys. Status Solidi A, 1987, 102, p 293–299

    Article  Google Scholar 

  8. C. Bunget and G. Ngaile, Influence of Ultrasonic Vibration on Micro-Extrusion, Ultrasonics, 2011, 51(5), p 606–616

    Article  Google Scholar 

  9. T. Jimma, Y. Kasuga, N. Iwaki, O. Miyazawa, E. Mori, K. Ito, and H. Hatano, An Application of Ultrasonic Vibration to the Deep Drawing Process, J. Mater. Process. Technol., 1998, 80-81, p 406–412

    Article  Google Scholar 

  10. Y. Liu, S. Suslov, Q. Han, C. Xu, and L. Hua, Microstructure of the Pure Copper Produced by Upsetting with Ultrasonic Vibration, Mater. Lett., 2012, 67(1), p 52–55

    Article  Google Scholar 

  11. K. Siegert and A. Möck, Wire Drawing with Ultrasonically Oscillating Dies, J. Mater. Process. Technol., 1996, 60(1-4), p 657–660

    Article  Google Scholar 

  12. M.A. Rasoli, A. Abdullah, M. Farzin, A.F. Tehrani, and A. Taherizadeh, Influence of Ultrasonic Vibrations on Tube Spinning Process, J. Mater. Process. Technol., 2012, 212(6), p 1443–1452

    Article  Google Scholar 

  13. J. Hung and M. Chiang, The Influence of Ultrasonic-Vibration on Double Backward-Extrusion of Aluminum Alloy, Proceeding of the World Congress on Engineering 2009 (WCE 2009), 2009, Vol II, London

  14. S.A.A.A. Mousavi, H. Feizi, and R. Madoliat, Investigations on the Effects of Ultrasonic Vibrations in the Extrusion Process, J. Mater. Process. Technol., 2007, 188, p 657–661

    Article  Google Scholar 

  15. Y. Ashida and H. Aoyama, Press forming Using Ultrasonic Vibration, J. Mater. Process. Technol., 2007, 188, p 118–122

    Article  Google Scholar 

  16. M. Lucas and Y. Daud, A Finite Element Model of Ultrasonic Extrusion, J. Phys., 2009, 181, p 012027

    Google Scholar 

  17. B.L.F. Blaha, Tensile Deformation of Zinc Crystal Under Ultrasonic Vibration, Nature, 1955, 42, p 556

    Google Scholar 

  18. J.-C. Hung and C. Hung, The Influence of Ultrasonic-Vibration on Hot Upsetting of Aluminum Alloy, Ultrasonics, 2005, 43(8), p 692–698

    Article  Google Scholar 

  19. Y. Daud, M. Lucas, and Z. Huang, Modelling the Effects of Superimposed Ultrasonic Vibrations on Tension and Compression Tests of Aluminium, J. Mater. Process. Technol., 2007, 186(1-3), p 179–190

    Article  Google Scholar 

  20. A. Siddiq and E. Ghassemieh, Thermomechanical Analyses of Ultrasonic Welding Process Using Thermal and Acoustic Softening Effects, Mech. Mater., 2008, 40(12), p 982–1000

    Article  Google Scholar 

  21. S. AbdulAziz, M. Lucas, F. Chinesta, Y. Chastel, and M. ElMansori, A Study of an Ultrasonically Assisted Metal Forming Test, AIP Conf. Proc., 2011, 733(1), p 733–738

    Article  Google Scholar 

  22. A. Rusinko, Analytical Description of Ultrasonic Hardening and Softening, Ultrasonics, 2011, 51(6), p 709–714

    Article  Google Scholar 

  23. K.W. Siu, A.H.W. Ngan, and I.P. Jones, New Insight on Acoustoplasticity—Ultrasonic Irradiation Enhances Subgrain Formation During deformation, Int. J. Plast, 2011, 27(5), p 788–800

    Article  Google Scholar 

  24. Z. Yao, G.-Y. Kim, L. Faidley, Q. Zou, D. Mei, and Z. Chen, Experimental Study of High-Frequency Vibration Assisted Micro/Mesoscale Forming of Metallic Materials, J. Manuf. Sci. Eng., 2011, 133(6), p 061009

    Article  Google Scholar 

  25. Z. Yao, G.-Y. Kim, L. Faidley, Q. Zou, D. Mei, and Z. Chen, Effects of Superimposed High-Frequency Vibration on Deformation of Aluminum in Micro/Meso-Scale Upsetting, J. Mater. Process. Technol., 2012, 212(3), p 640–646

    Article  Google Scholar 

  26. Z. Yao, G.-Y. Kim, Z. Wang, L. Faidley, Q. Zou, D. Mei, and Z. Chen, Acoustic Softening and Residual Hardening in Aluminum: Modeling and Experiments, Int. J. Plast, 2012, 39, p 75–87

    Article  Google Scholar 

  27. F. Barlat, M.V. Glazov, J.C. Brem, and D.J. Lege, A Simple Model for Dislocation Behavior, Strain and Strain Rate Hardening Evolution in Deforming Aluminum Alloys, Int. J. Plast, 2002, 18, p 919–939

    Article  Google Scholar 

  28. Y. Estrin, Dislocation-Density-Related Constitutive Modeling, Academic Press Inc., New York, 1966

    Google Scholar 

  29. H.J. Forest and M.F. Ashby, Deformation mechanisms Maps: The Plasticity and Creep of Metals and Ceramics, 1st ed., Pergamon Press, Oxford shire, Oxford, New York, 1982

    Google Scholar 

  30. U.F. Kocks, Constitutive Behavior Based on Crystal Plasticity: Unified Constitutive Equations for Creep and Plasticity, Elsevier Applied Science, London; New York, 1987

    Book  Google Scholar 

  31. A. Siddiq and T. El Sayed, Acoustic Softening in Metals During Ultrasonic Assisted Deformation Via CP-FEM, Mater. Lett., 2011, 65(2), p 356–359

    Article  Google Scholar 

  32. C. Tome, G.R. Canova, U.F. Kocks, N. Christodoulou, and J.J. Jonas, The Relation Between Macroscopic and Microscopic Strain Hardening in F.C.C. Polycrystals, Acta Metall., 1984, 32(10), p 1637–1653

    Article  Google Scholar 

  33. J.I. Taylor, Plastic Strain in Metals, J. Inst. Met., 1938, 62, p 307–324

    Google Scholar 

  34. J. Blitz, Ultrasonics Methods and Applications, Newnes-Butterworth, London, 1971

    Google Scholar 

  35. Y. Liu, S. Suslov, Q. Han, L. Hua, and C. Xu, Comparison Between Ultrasonic Vibration-Assisted Upsetting and Conventional Upsetting, Metall. Mater. Trans. A, 2013, 44(7), p 3232–3244

    Article  Google Scholar 

  36. ASM, Metallography and Microstructures, Vol 9, ASM Handbook, New York, 1992

    Google Scholar 

Download references

Acknowledgment

The authors thankfully acknowledge the financial support of University of Tehran and the provision of the research facilities used in this work. Also, the sincere collaboration of Dr. M. R. Karafi (Assistance professor of Tarbiat Modares University) during designing of ultrasonic equipments in this research is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Bagherzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherzadeh, S., Abrinia, K. Effect of Ultrasonic Vibration on Compression Behavior and Microstructural Characteristics of Commercially Pure Aluminum. J. of Materi Eng and Perform 24, 4364–4376 (2015). https://doi.org/10.1007/s11665-015-1730-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1730-8

Keywords

Navigation